Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x^2+5x}{5x^2+x^3}\)
\(=\frac{x\left(x+5\right)}{x^2\left(x+5\right)}=\frac{1}{x}\)
b) \(\frac{x^4+x^2+1}{x^3+1}\)
\(=\frac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^2+x+1}{x+1}\)
\(a)\frac{x^2+5x}{5x^2+x^3}=\frac{x\left(x+5\right)}{x^2\left(5+x\right)}=\frac{1}{x}\)
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
Chứng minh rằng :
4 x mũ 2 trừ 4 x + 3 lớn hơn 0 với mọi x
(giúp mình với, mình đang cần gấp lắm!!!!!)
\(4x^2-4x+3\)
\(=\left(4x^2-4x+1\right)+2\)
\(=\left(2x+1\right)^2+2>0\)với mọi x
vậy \(4x^2-4x+3>0\)với mọi x
\(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\)
Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow4x^2-4x+3\ge2\forall x\)
hay \(4x^2-4x+3>0\forall x\)
\(a^4+a^3+a+1=\left(a+1\right)\left(a^3+1\right)=\left(a+1\right)^2\left(a^2-a+1\right)=\left(a+1\right)^2\left(\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\right)\)
ta có : \(\left(a+1\right)^2\ge0\forall a\);\(\left(\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\right)>0\forall a\)
(5n-2)^2-(2n-5)^2=(5n-2-2n+5)(5n-2+2n-5)=(3n+3)(7n-7)=3(n+1)7(n-1)=21(n^2-1) chia het cho 21
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0;\left(x-1\right)^2\ge0;\left(y+1\right)^2\ge0\)
Để \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow x+y=0\)
\(\Leftrightarrow y+1=0\Rightarrow y=-1\)
\(\Leftrightarrow x-1=0\Rightarrow x=1\)
Vậy \(x=1; y=-1\)
\(\left(5x-4\right)^4-49x^2=0\)
\(\Rightarrow\left[\left(5x-4\right)^2\right]^2-\left(7x\right)^2=0\)
\(\Rightarrow\left[\left(5x-4\right)^2-7x\right]\left[\left(5x-4\right)^2+7x\right]=0\)
\(\Rightarrow\left(25x^2-47x+16\right)\left(25x^2-33x+16\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}25x^2-47x+16=0\\25x^2-33x+16=0\end{matrix}\right.\)
BẠN TỰ LÀM NỐT NHÉ.