K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

\(\left(5x-1\right)^2-81=0\)

\(\Leftrightarrow\left(5x-1\right)^2=81\)

\(\Leftrightarrow\orbr{\begin{cases}\left(5x-1\right)^2=9^2\\\left(5x-1\right)^2=\left(-9\right)^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=9\\5x-1=-9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=10\\5x=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-8}{5}\end{cases}}\)

29 tháng 8 2021

Trả lời:

\(\left(5x-1\right)^2-81=0\)

\(\Leftrightarrow\left(5x-1-9\right)\left(5x-1+9\right)=0\)

\(\Leftrightarrow\left(5x-10\right)\left(5x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-10=0\\5x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{8}{5}\end{cases}}}\)

Vậy x = 2; x = - 8/5 là nghiệm của pt.

17 tháng 8 2017

* \(x^2-8x+12=0\Leftrightarrow x^2-2x-6x+12=0\)

\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\) vậy \(x=2;x=6\)

* \(x^2+5x-14=0\Leftrightarrow x^2-2x+7x-14=0\)

\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\) vậy \(x=-7;x=2\)

* \(16x^2-81=0\Leftrightarrow16\left(x^2-\dfrac{81}{16}\right)=0\Leftrightarrow x^2-\dfrac{81}{16}=0\)

\(\Leftrightarrow x^2=\dfrac{81}{16}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\) vậy \(x=\dfrac{9}{4};x=\dfrac{-9}{4}\)

17 tháng 8 2017

+ \(x^2-8x+12=0\)

\(\Rightarrow\left(x^2-2.4x+16\right)-4=0\)

\(\Rightarrow\left(x-4\right)^2-4=0\)

\(\Rightarrow\left(x-4\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

+ \(16x^2-81=0\)

\(\Rightarrow16x^2-9^2=0\)

\(\Rightarrow16x^2=9^2\)

\(\Rightarrow x^2=\dfrac{81}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)

 

5 tháng 12 2017

1)⇔x2+1x-3x+3=0

⇔x(x+1)-3(x+1)=0

⇔(x+1)(x-3)=0

⇔x+1=0 hoặc x-3=0

⇔x=-1 hoặc x=3

5 tháng 12 2017

4)⇔x(1+5x)=0

⇔x=0 hoặc 1+5x=0

⇔x=0 hoặc 5x=-1

⇔x=0 hoặc x=-0.2

11 tháng 8 2018

Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

Đặt \(x^2+5x=a\) . Phương trình trở thành :

\(a^2-2a-24=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)

Với \(a=-4\)

\(\Leftrightarrow x^2+5x=-4\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Với \(a=6\)

\(\Leftrightarrow x^2+5x=6\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{-1;2;-3;-4\right\}\)

11 tháng 8 2018

1) x4 - 5x2 + 4 = 0

⇔ x4 - x2 - 4x2 + 4 = 0

⇔ x2(x2 - 1) - 4(x2 - 1) = 0

⇔ (x2 - 1)(x2 - 4) = 0

\(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)

Vậy \(x=\pm1\)\(x=\pm2\)

26 tháng 8 2020

a) 5x( x - 1 ) = x - 1

<=> 5x2 - 5x = x - 1

<=> 5x2 - 5x - x + 1 = 0

<=> 5x2 - 6x + 1 = 0

<=> 5x2 - 5x - x + 1 = 0

<=> 5x( x - 1 ) - 1( x - 1 ) = 0

<=> ( x - 1 )( 5x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

b) 2( x + 5 ) - x2 - 5x = 0

<=> 2x + 10 - x2 - 5x = 0

<=> -x2 - 3x + 10 = 0

<=> -x2 - 5x + 2x + 10 = 0

<=> -x( x + 5 ) + 2( x + 5 ) = 0

<=> ( x + 5 )( 2 - x ) = 0

<=> \(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

c) x2 - 2x - 3 = 0

<=> x2 + x - 3x - 3 = 0

<=> x( x + 1 ) - 3( x + 1 ) = 0

<=> ( x + 1 )( x - 3 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

d) 2x2 + 5x - 3 = 0

<=> 2x2 - x + 6x - 3 = 0

,<=> x( 2x - 1 ) + 3( 2x - 1 ) = 0

<=> ( 2x - 1 )( x + 3 ) = 0

<=> \(\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)

26 tháng 8 2020

a) 5x ( x - 1 ) = x - 1 <=> 5x2 - 5x - x + 1 = 0

<=> 5x2 - 6x + 1 = 0 <=> 5x2 - x - ( 5x - 1 ) = 0 

<=> x ( 5x - 1 ) - ( 5x - 1 ) = 0 <=> ( x - 1 )( 5x - 1 ) = 0

<=> x = 1 hoặc x = 1/5

b) 2 ( x + 5 ) - x2 - 5x = 0 <=> 2 ( x + 5 ) - x ( x + 5 ) = 0

<=> ( 2 - x ) ( x + 5 ) = 0 <=> x = 2 hoặc x = -5

c) x2 - 2x - 3 = 0 <=> x2 + x - 3x - 3 = 0 

<=> x ( x + 1 ) - 3 ( x + 1 ) = 0 <=> ( x - 3 ) ( x + 1 ) = 0 

<=> x = 3 hoặc x = -1

d) 2x2  + 5x - 3 = 0

Ta có : delta = 52 - 4.2.3 = 25 - 24 = 1

Khi đó : x = -1 hoặc x = 3/2  

12 tháng 12 2019

a)2x.(3x+5)-x.(6x-1)=33

=>\(6x^2+10x-6x^2+x=33\)

=>11x=33

=>x=3

12 tháng 12 2019

b)x(3x-1)+12x-4=0

=>x(3x-1)+4(3x-1)=0

=>(x-4)(3x-1)=0

=>x-4=0 hoặc 3x-1=0

+)x-4=0 +)3x-1=0

=>x=4 =>x=\(\frac{1}{3}\)

29 tháng 11 2018

\(8x^3+12x^2+6x+1=0.\)

\(\Leftrightarrow8x^2\left(x+\frac{1}{2}\right)+8x\left(x+\frac{1}{2}\right)+2\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(8x^2+8x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\2\left(4x^2+4x+1\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)

Vậy pt có 1 No là...

29 tháng 11 2018

\(2\left(x+5\right)-x^2-5x=0.\)

\(\Leftrightarrow2x+10-x^2-5x=0\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)

11 tháng 6 2019

Phân tích đa thức thành nhân tử:(em làm luôn đấy,ko ghi lại đề)

\(\left(x^3+y^3\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-1^2\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

11 tháng 6 2019

\(8x^3+12x^2+6x+1=0.\)

\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3=0\)

\(\Leftrightarrow\left(2x+1\right)^3=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

\(2x^2+5x-3=0\Leftrightarrow\left(2x^2+6x\right)+\left(-x-3\right)=0\)

\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)

\(x^2-2x-3=0\Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}.}\)

\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)

\(=5x-1+2\left(4+5x-20x-25x^2\right)+25x^2+40x+16\)

\(=25x^2+45x+15+8+10x-40x-50x^2\)

\(=-25x^2+15x+23\)

\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)^3+\left(x+y\right)^3-3x^2y-3xy^2\)

\(=\left(x+y\right)^3-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3xy^2-3x^2y\)

\(=x^3+y^3\)

23 tháng 6 2017

2) Ta có : x2 - 5x + 6 = 0

<=> x2 - 3x - 2x + 6 = 0

<=> x(x - 3) - (2x - 6) = 0

<=> x(x - 3) - 2(x - 3) = 0 

=> (x - 3) ( x - 2) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

Vậy x \(\in\) {2;3}