Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
\(A=\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{2^3.5.10^3+7.10^3}=\frac{33.10^3}{10^3\left(2^3.5+7\right)}=\frac{33.10^3}{10^3.47}=\frac{33}{47}\)
\(B=\frac{3774}{5217}=\frac{34.111}{47.111}=\frac{34}{47}\)
\(\Rightarrow\frac{33}{47}< \frac{34}{47}\)
=> A<B
a)(25.5-52.2):(5.2)-3
= (25.5-25.2):10-3
= 25.(5-2):10-3
= 25.3:10-3
=75:10-3=7,5-3=4,5
b)(6.52 -137).2-23.(7+3)(Sai đề)
c)23-53 :52 +12.22
= 8-125:25+12.4
= 8-5+12.4=8-5+48=3+48=51
d)2.[(95+52:5):22 +180] -22.102
= 2.[(95+25:5):4+180]-4.100
= 2.[(95+5):4+180]-400
= 2.(100:4+180)-400
= 2. (25+180)-400
= 2. 205-400
= 410-400=10
e)27.22+54:53.24-3.25
= 128+625:125.24-3.32
= 128+5.24-96
= 128+120-96
= 248-96=152
f)2.[(7-33 :32):22+99]-100
=2.[(7-27:9):4+99]-100
=2.[(7-3):4+99]-100
=2. (4:4+99)-100
=2. (1+99)-100
=2. 100-100
= 200-100
=100
Chúc Bạn Học Tốt ^_^
Bạn ơi ; tách từng bài ra cho dễ làm :
1.7C-C= 7^2016-7
C = ( 7^2016-7 ) :6
\(C=7+7^2+7^3+.....+7^{2016}\)
\(\Rightarrow7C=7^2+7^3+7^4+...+7^{2017}\)
\(\Rightarrow7C-C=\left(7^2+7^3+.....+7^{2017}\right)-\left(7+7^2+7^3+....+7^{2016}\right)\)
\(\Rightarrow6C=2^{2017}-7\)
\(\Rightarrow C=\frac{2^{2017}-7}{6}\)
Bài 1
a, 23 + ( x - 32 ) = 1
x - 32 = 1 - 23 = -7
x = -7 + 32
x = 2
b, 5 . (x+7) -10 = 40
5 . (x+7) = 50
x+7 = 50 :5 =10
x = 10 - 7
x = 3
1)\(\left(2\dfrac{3}{17}-2\dfrac{3}{5}\right)+\left(-2\dfrac{3}{17}-1\dfrac{2}{5}\right)\)
=\(\dfrac{37}{17}-\dfrac{13}{5}+\left(-\dfrac{37}{17}\right)-\dfrac{7}{5}\)
=\(\left[\dfrac{37}{17}+\left(-\dfrac{37}{17}\right)\right]-\left(\dfrac{13}{5}+\dfrac{7}{5}\right)\)
=\(0-4=-4\)
2)\(\left(2\dfrac{7}{15}-3\dfrac{3}{7}\right)-\left(-\dfrac{9}{21}+3\dfrac{7}{15}\right)\)
=\(2\dfrac{7}{15}-3\dfrac{3}{7}+\dfrac{9}{21}-3\dfrac{7}{15}\)
=\(\left(2\dfrac{7}{15}-3\dfrac{7}{15}\right)+\left(-3\dfrac{3}{7}+\dfrac{9}{21}\right)\)
=\(-1+\left(-\dfrac{24}{7}+\dfrac{9}{21}\right)\)
=\(\left(-1\right)+\left(-3\right)\)
=-4
3)\(\left(2\dfrac{7}{19}+5\dfrac{3}{7}\right)+\left(-\dfrac{14}{38}+1\dfrac{4}{7}\right)\)
\(=2\dfrac{7}{19}+5\dfrac{3}{7}+\left(-\dfrac{14}{38}\right)+1\dfrac{4}{7}\)
\(=\left(5\dfrac{3}{7}+1\dfrac{4}{7}\right)+\left[2\dfrac{7}{19}+\left(-\dfrac{14}{38}\right)\right]\)
\(=7+\left[\dfrac{45}{19}+\left(-\dfrac{14}{38}\right)\right]\)
\(=7+2=9\)
Hai câu(2),(3)mình làm bằng cách cộng trừ hỗn số cho nhanh nếu bạn không làm cách đó thì đổi ra p/s làm cũng được
kazuto kirigaya thật là bt làm ko đó ko bt thì nói đi còn bt thì làm đi
\(A=5+5^2+5^3+5^4+...+5^{2004}\)
\(5A=5^2+5^3+5^4+5^5+...+5^{2005}\)
\(5A-A=\left(5^2+5^3+5^4+5^5+...+5^{2005}\right)-\left(5+5^2+5^3+5^4+...+5^{2004}\right)\)
\(4A=5^{2005}-5\)
\(A=\dfrac{5^{2005}-5}{4}\)
\(B=7^1+7^2+7^3+....+7^{2015}\)
\(7B=7^2+7^3+7^4+....+7^{2016}\)
\(7B-B=\left(7^2+7^3+7^4+...+7^{2016}\right)-\left(7+7^2+7^3+....+7^{2015}\right)\)
\(6B=7^{2016}-7\)
\(B=\dfrac{7^{2016}-7}{6}\)
\(C=4^5+4^6+4^7+...+4^{2016}\)
\(4C=4^6+4^7+4^8+...+4^{2017}\)
\(4C-C=\left(4^6+4^7+4^8+...+4^{2017}\right)-\left(4^5+4^6+4^7+...+4^{2016}\right)\)
\(3C=4^{2017}-4^5\)
\(C=\dfrac{4^{2017}-4^5}{3}\)
A = 5 + 52 + 53 + 54 + ... + 52004
5A = 52 + 53 + 54 + 55 + ... + 52005
5A - A = 52005 - 5
4A = 52005 - 5
A = (52005 - 5) : 4
B = 71 + 72 + 73 + ... + 72015
7B = 72 + 73 + 74 + ... + 72016
7B - B = 72016 - 7
6B = 72016 - 7
B = (72016 - 7) : 6
C = 45 + 46 + 47 + ... + 42016
4C = 46 + 47 + 48 + ... + 42017
4C - C = 42017 - 45
3C = 42017 - 45
C = (42017 - 45) : 3
Giải:
a) \(A=\dfrac{5}{13}.\dfrac{5}{7}+\dfrac{-20}{41}+\dfrac{5}{13}+\dfrac{-21}{41}\)
\(\Leftrightarrow A=\dfrac{5}{13}.\dfrac{5}{7}+\dfrac{5}{13}+\dfrac{-21}{41}+\dfrac{-20}{41}\)
\(\Leftrightarrow A=\dfrac{5}{13}\left(\dfrac{5}{7}+1\right)+\dfrac{-41}{41}\)
\(\Leftrightarrow A=\dfrac{5}{13}.\dfrac{12}{7}+\left(-1\right)\)
\(\Leftrightarrow A=\dfrac{60}{91}+\left(-1\right)=-\dfrac{31}{91}\)
Vậy ...
b) \(B=\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{12}{11}-\dfrac{5}{7}.\dfrac{7}{11}\)
\(\Leftrightarrow B=\dfrac{5}{7}\left(\dfrac{2}{11}+\dfrac{12}{11}-\dfrac{7}{11}\right)\)
\(\Leftrightarrow B=\dfrac{5}{7}.\dfrac{7}{11}\)
\(\Leftrightarrow B=\dfrac{5}{11}\)
Vậy ...
c) \(C=\dfrac{-2}{3}+\dfrac{-5}{7}+\dfrac{2}{3}+\dfrac{-2}{7}\)
\(\Leftrightarrow C=\left(\dfrac{-2}{3}+\dfrac{2}{3}\right)+\left(\dfrac{-2}{7}+\dfrac{-5}{7}\right)\)
\(\Leftrightarrow C=0+\left(-1\right)=-1\)
Vậy ...
1. Tìm \(x\):
a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
\(\dfrac{x}{5}=\dfrac{1}{5}\)
\(\Rightarrow x=1\)
b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)
\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)
\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)
\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)
\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)
\(x=\dfrac{-17}{8}\)
c) \(2016^3.2016^x=2016^8\)
\(2016^x=2016^8:2016^3\)
\(2016^x=2016^{8-3}\)
\(2016^x=2016^5\)
\(\Rightarrow x=5\)
d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)
\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)
\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)
\(x+\dfrac{3}{4}=\dfrac{35}{4}\)
\(x=\dfrac{35}{4}-\dfrac{3}{4}\)
\(x=\dfrac{32}{4}=8\)
e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)
\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)
\(2,8.x-2^5=6\)
\(2,8.x=6+32\)
\(2,8.x=38\)
\(x=38:2,8\)
\(x=\dfrac{95}{7}\)
f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)
\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)
\(\dfrac{4}{7}.x=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}:\dfrac{4}{7}\)
\(x=\dfrac{28}{15}\)
g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)
\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)
\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)
\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)
\(\dfrac{3x}{7}=\dfrac{-6}{7}\)
\(\Rightarrow3x=-6\)
\(x=\left(-6\right):3\)
\(x=-2\)
2. Thực hiện phép tính:
a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)
\(=\dfrac{7}{18}+\dfrac{9}{5}\)
\(=\dfrac{197}{90}\)
b) \(\dfrac{7.5^2-7^2}{7.24+21}\)
\(=\dfrac{7.25-7.7}{7.24+7.3}\)
\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)
\(=\dfrac{7.18}{7.27}\)
\(=\dfrac{2}{3}\)
c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
Đây là toán nâng cao chuyên đề số nguyên tố, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá. Giải:
Vì p; q đều là các số nguyên tố nên ta có các trường hợp:
TH1: Nếu p = 2 thì: Thay p = 2 vào 5p\(^2\) = q\(^3\) - 7 ta có:
5.2\(^2\) = q\(^3\) - 7 ⇒ 5.4 = q\(^3\) - 7 ⇒20 = q\(^3\) - 7
⇒ q\(^3\) = 20 +7 ⇒ q\(^3=27\) ⇒ q\(^3\) = 3\(^3\) ⇒q = 3
TH2: Nếu p là số nguyên tố lớn hơn 2 thì q là số lẻ
Khi đó: 5p\(^2\) = \(\overline{..5}\) suy ra: \(p^3-7=\overline{..5}\)
⇒\(p^3=7+\overline{..5}=\overline{..2}\) vậy q\(^3\) là số nguyên tố chẵn.
Số nguyên tố chẵn duy nhất là 2, suy ra q = 2.
p\(^3=2^3=8\) ≠ \(\overline{..2}\) (loại)
Từ những lập luận trên ta có, cặp số nguyên tố thỏa mãn đề bài là:
(q; p) = (2; 3)