Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Baif2:
A=\(12x^2+20x-8+9\)
=\(4\left(3x^2+5x-2\right)+9\)
=4.0+9
= 9
vậy A=............
hc tốt
\(3x^2+5x-2=0\)
\(\Leftrightarrow3x^2-x+6x-2=0\)
\(\Leftrightarrow x\left(3x-1\right)+2\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)

a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)
vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)
c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x
= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)
= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2
= 0 (đpcm)

a)
\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)
c)
\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)
d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)
f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)
g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)
\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)

\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)
\(=9\)
Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x
b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)

a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)
b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)
c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)
d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)
e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)
f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)
i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)

Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)

Ta có A = 2018.2020 + 2019.2021
= (2020 - 2).2020 + 2019.(2019 + 2)
= 20202 - 2.2020 + 20192 + 2.2019
= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B
=> A = B
b) Ta có B = 964 - 1= (932)2 - 12
= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1)
(932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80
mà A = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10
=> A < B
c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)
=> A < B
d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)
=> A < B
6A: Thay x=0 vào y=3x-6, ta được:
\(y=3\cdot0-6=0-6=-6\)
=>A(0;-6) thuộc đồ thị hàm số y=3x-6
Thay x=-1 vào y=3x-6, ta được:
\(y=3\cdot\left(-1\right)-6=-3-6=-9\) <>-3
=>B(-1;-3) không thuộc đồ thị hàm số y=3x-6
Thay x=-2 vào y=3x-6, ta được:
\(y=3\cdot\left(-2\right)-6=-6-6=-12\) <>0
=>C(-2;0) không thuộc đồ thị hàm số y=3x-6
Thay x=1 vào y=3x-6, ta được:
\(y=3\cdot1-6=3-6=-3\)
=>D(1;-3) thuộc đồ thị hàm số y=3x-6
6B:
Thay x=2 vào y=-2x+8, ta được:
\(y=-2\cdot2+8=-4+8=4\)
=>M(2;4) thuộc đồ thị hàm số y=-2x+8
Thay x=4 vào y=-2x+8, ta được:
\(y=-2\cdot4+8=-8+8=0\)
=>N(4;0) thuộc đồ thị hàm số y=-2x+8
Thay x=-2 vào y=-2x+8, ta được:
\(y=\left(-2\right)\cdot\left(-2\right)+8=4+8=12\) <>4
=>P(-2;4) không thuộc đồ thị hàm số y=-2x+8
Thay x=8 vào y=-2x+8, ta được:
\(y=-2\cdot8+8=-16+8=-8\) <>0
=>Q(8;0) không thuộc đồ thị hàm số y=-2x+8
1A:
a: y=4x+1 nên hệ số góc là a=4
b: y=3-1,5x nên hệ số góc là a=-1,5
c: \(y=\frac34\left(x+4\right)=\frac34x+3\)
=>Hệ số góc là \(a=\frac34\)
d: \(y=\frac{-2x+3}{2}=-x+\frac32\)
=>Hệ số góc là -1
1B:
a: y=-5x+7
=>Hệ số góc là a=-5
b: y=1-x=-x+1
=>Hệ số góc là a=-1
c: y=0,3(x-10)=0,3x-3
=>Hệ số góc là a=0,3
d: \(y=\frac{6x+1}{3}=2x+\frac13\)
=>Hệ số góc là a=2
5A:
a: y=x+3
Bảng giá trị:
x
0
1
y=x+3
3
4
Vẽ đồ thị:
b: y=2x-5
Bảng giá trị
x
0
1
y=2x-5
-5
-3
Vẽ đồ thị
c: y=-1,5x
Bảng giá trị:
x
0
2
y=-1,5x
0
-3
Vẽ đồ thị:
5B:
a: y=x-2
Bảng giá trị:
x
0
1
y=x-2
-2
-1
Bảng giá trị:
b: y=-2x+4
x
0
1
y=-2x+4
4
2
Vẽ đồ thị
c: \(y=\frac23x\)
Bảng giá trị:
x
0
3
y=\(\frac23\) x
0
2
Vẽ đồ thị: