Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cơ bản 2 câu đều giống nhau
a) 132A = 133 + 135 + ... + 13103
169A - A = ( 133 + 135 + ... + 13103 ) - ( 13 + 133 + ... + 13101 )
168A = 13103 - 13
A = 13103 - 13 / 168
b) Tương tự nhân cả 2 vế với 53
a) A = \(\frac{101}{19}.\) \(\frac{61}{218}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)
= \(\frac{101}{218}.\frac{61}{19}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)
=\(\frac{101}{218}.\left(\frac{61}{19}-\frac{42}{19}\right)+\frac{117}{218}\)
=\(\frac{101}{218}.\frac{19}{19}+\frac{117}{218}\)
=\(\frac{101}{218}.1+\frac{117}{218}\)
=\(\frac{101}{218}+\frac{117}{218}\)
=\(\frac{218}{218}\)\(=1\)
b) B = \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).\left(\frac{4}{5}-\frac{3}{4}-\frac{1}{20}\right)\)
= \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right)\)\(.\left(\frac{1}{20}-\frac{1}{20}\right)\)
= \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).0\)
= \(0\)
\(A,1,1+\frac{2}{3}+0,75+\frac{5}{8}\)
\(=\frac{11}{10}+\frac{2}{3}+\frac{3}{4}+\frac{5}{8}\)
\(=\frac{11}{10}+\frac{2}{3}+\frac{11}{8}\)
\(=\frac{53}{30}+\frac{11}{8}\)
\(=\frac{377}{120}\)
\(b,\frac{5}{11}+\frac{6}{11}:\frac{13}{22}+\frac{7}{3}-\frac{1}{2}\)
\(=\frac{5}{11}+\frac{6}{11}.\frac{22}{13}+\frac{7}{3}-\frac{1}{2}\)
\(=\frac{5}{11}+\frac{12}{13}+\frac{7}{3}-\frac{1}{2}\)
\(=\frac{197}{143}+\frac{7}{3}-\frac{1}{2}\)
\(=\frac{1592}{429}-\frac{1}{2}\)
\(=\frac{2755}{858}\)
c) \(D=2000\cdot2000-1998\cdot2002\)
\(D=2000^2-\left(2000-2\right)\left(2000+2\right)\)
\(D=2000^2-\left(2000^2-2^2\right)\)
\(D=2000^2-2000^2+4\)
\(D=4\)
f) \(G=1+3-5+7-9+11-13+...159-161+163\)
\(G=1+\left(3-5\right)+\left(7-9\right)+\left(11-13\right)+...+\left(159-161\right)+163\)
\(G=1-2-2-2-...-2+163\)
\(G=164-2\cdot79\)
\(G=164-158=6\)
a) ab - ba = ( 10a + b ) - ( 10b + a ) = 10a + b - 10b - a = ( 10a - a ) + ( b - 10b ) = 9a - 9b = 9( a - b ) chia hết cho 9
=> ab - ba chia hết cho 9
b) abcabc = abc . 1001 = abc . ( 7 . 13 . 11 ) chia hết cho 11
=> abcabc chia hết cho 11
c) aaa = a . 111 = a . ( 3 . 37 ) chia hết cho 37
=> aaa chia hết cho 37
\(a)A=\frac{24\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}\)
\(=\frac{(23+1)\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}=\frac{47-23+24}{47-23+24}\cdot\frac{3(1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13})}{3(3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11})}\)
\(=\frac{1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13}}{3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11}}=\frac{1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11}}{3(1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11})}=\frac{1}{3}\)
\(b)\)\(\text{Đặt A = }1+2+2^2+2^3+...+2^{2012}\)
\(2A=2(1+2^2+2^3+...+2^{2012})\)
\(2A=2+2^2+2^3+...+2^{2013}\)
\(2A-A=(2+2^2+2^3+2^4+...+2^{2013})-(1+2+2^2+2^3+...+2^{2012})\)
\(\Rightarrow A=2^{2013}-1\)
\(\text{Quay lại bài toán,ta có :}\)
\(B=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2(2^{2013}-1)}=\frac{1}{2}\)
a) \(\overline{ab}.101=\overline{abab}\)
b) \(\overline{abc}.7.11.13=\overline{abc}.1001=\overline{abcabc}\)
Bài làm :
\(a)ab.101\)
\(=ab.\left(100+1\right)\)
\(=ab00+ab\)
\(=abab\)
\(b)abc.7.11.13\)
\(=abc.1001\)
\(=abc.\left(1000+1\right)\)
\(=abc000+abc\)
\(=abcabc\)
Học tốt nhé