\(5+5^2+5^3+...+5^{2021}\) chứng minh rằng 4B +1 là lũy thừa có cơ số là 5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

Bổ sung đề: \(B=1+5+5^2+5^3+...+5^{2021}\)

\(\Rightarrow5B=5+5^2+5^3+...+5^{2022}\)

\(\Rightarrow4B=5B-B=5+5^2+5^3+...+5^{2022}-1-5-5^2-...-5^{2021}=5^{2022}-1\)

\(\Rightarrow4B+1=5^{2022}-1+1=5^{2022}\) là lũy thừa có cơ số 5

 

1 tháng 11 2016

1) 55 - 54 + 53 = 53 . 52 - 53 . 5 - 53

= 53 . ( 52 - 5 + 1 )

= 53 . ( 25 - 5 - 1 )

= 53 . 21

= 53 . 3 . 7 chia hết cho 7

Vậy chứng minh 55 - 54 + 53 chia hết cho7

2) 76 + 75 - 74 = 74 . 72 + 74 . 7 - 74

= 74 . ( 72 + 7 - 1 )

= 74 . ( 49 + 7 - 1 )

= 74 . 55

= 74 . 5 .11 chia hết cho 11

Vậy chứng minh 76 + 75 - 74 chia hết cho 11

Tích mình nha !!!!!!!!!!!!!!!!! vui

a) Ta có :

A = 50 + 51 + 52 + ... + 52010 + 52011

=> 5A = 51 + 52 + 53 + ... + 52012

=> 5A - A = ( 51 + 52 + 53 + ... + 52012 ) - ( 50 + 51 + 52 + ... + 52010 + 52011 )

=> 4A = 22012 - 50 = 52012 - 1

=> 4A + 1 = ( 52012 - 1 ) + 1 = 52012 llalàlà 1 lũy thừa của 5

b) Phần a ta đã tính được 4A + 1 = 52012

Mà 4A + 1 = 5x

=> 5x = 52012

=> x = 2012

\(S=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)=3\left(2+2^3+...+2^{11}\right)⋮3\)

\(S=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\left(2+...+2^{10}\right)⋮7\)

Vì S chia hết cho 2 và S chia hết cho 3 

nên \(S⋮6\)

31 tháng 10 2016

\(\overline{aaa}+\overline{bbb}=111.a+111.b=111\left(a+b\right)=37\times3\times\left(a+b\right)⋮37\)

17 tháng 1 2017

a) A=4+42+43+...4100 => 4A=42+43+44+...+4101

=> 4A-A=4101-4 <=> 3A=4101-4 <=> 3A-4=4101 =>đpcm

b) Tương tự

24 tháng 9 2017

Minh Quân yêu Thanh Hiền

5 tháng 7 2018

\(a,\) \(\left(3^2\right)^3\) = \(3^{2.3}\) = \(3^6\)

\(\left(3^3\right)^2\) = \(3^{3.2}=3^6\)

\(\left(3^2\right)^5\) = \(3^{2.5}=3^{10}\)

\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)

b, \(\left(5^3\right)^2=5^{3.2}=5^6\)

\(\left(5^4\right)^3=5^{4.3}=5^{12}\)

\(\left(5^2\right)^4\) = \(5^{2.4}=5^8\)

\(25^5=\left(5^2\right)^5=5^{2.5}=5^{10}\)

20 tháng 6 2017

Câu 1: ta có:

\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)

=> C=\(\frac{4^{n+1}-4}{3}\) 

b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)

=> D=\(\frac{5^{2001}-1}{4}\)

Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)

=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .

Vậy \(A+1=2^{201}\)

Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)

=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B + 3 là một lũy thừa của 3...

Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)

=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)

Vậy C là lũy thừa của 2 có số mũ là 2006

Câu 5: a, Do 3n+2 chia hết cho n-1 hay:

3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;

=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)

b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6 

nên => n thuộc (1,6,-1,-6);

c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1

=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;

n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);

d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1 

=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);

20 tháng 6 2017

thanks nha