(√5+3)(5-a15)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR 

\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào 

3 tháng 6 2017

\(\sqrt{x+3}=\sqrt{5-x}\)

\(\Leftrightarrow x+3=5-x\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

31 tháng 5 2017

a/ Ta có CF vuông góc AB tại F (gt) 

Nên góc CFB = 90 độ 

BE vuông góc AC tại E 

Nên góc BEC = 90 độ 

Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt 

Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .

góc BEC = 90 độ (cmt)

Nên tam giác BEC vuông tại E 

Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .

27 tháng 9 2017

\(A=\sqrt{29-12\sqrt{5}}\)

\(A=\sqrt{\left(3\sqrt{5}\right)^2-2.2.3\sqrt{5}+4^2}\)

\(A=\sqrt{\left(3\sqrt{5}-4\right)^2}\)

\(A=\left|3\sqrt{5}-4\right|\)

\(A=3\sqrt{5}-4\) ( vi \(3\sqrt{5}-4>0\)

             vay \(A=3\sqrt{5}-4\)

27 tháng 9 2017

A=\(\sqrt{29-12\sqrt{5}}\)

  \(\approx1,472\)

13 tháng 6 2016

\(x^2+6x+5=0\)

<=>\(x^2+x+5x+5=0\)

<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9

13 tháng 6 2016

x^2+6x+5=0

<=> x^2+x+5x+5=0

<=>x(x+1)+5(x+1)=0

<=> (x+5)(x+1)=0

=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1