![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có:
5300= (52)150= 25150
3450= (33)150= 27150
vì 25150< 27150=> 5300< 3450
vậy 5300< 3450
Ta có:\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
\(3^{450}=\left(3^3\right)^{150}=27^{150}\)
Vì \(25^{150}< 27^{150}\) nên \(5^{300}< 3^{450}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
5300 = (53)100 = 125100
3500= (35)100= 243100
Vì 125100 < 243100 nên 5300 < 3500
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100
(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100
Vì 125100 < 243100
=> 1/125100 > 1/243100
=> (-1/5)300 > (-1/3)500
Ta có : \(\left(-\frac{1}{5}\right)^{300}=\left(-\frac{1}{5}\right)^{3.100}=\left(-\frac{1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(-\frac{1}{3}\right)^{500}=\left(-\frac{1}{3}\right)^{5.100}=\left(-\frac{1}{243}\right)^{100}=\left(\frac{1}{243}\right)^{100}\)
Mà \(125< 243\Rightarrow\frac{1}{125}>\frac{1}{243}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{243}\right)^{100}\)
\(=>\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: \(\frac{300}{-299}< -1\)
\(\frac{-500}{507}>-1\)
\(\Rightarrow\frac{300}{-299}< \frac{-500}{507}\Rightarrow x< y\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\frac{1^{500}}{2}=\frac{1}{2}\)
\(\frac{1^{300}}{3}=\frac{1}{3}\)
Mà 3>2
\(\Rightarrow\frac{1}{2}>\frac{1}{3}\)
Hay \(\frac{1^{500}}{2}>\frac{1^{300}}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{3}\right)^{500}=\left(\frac{1}{3}^5\right)^{100}=\frac{1}{243}^{100}\)
\(\left(\frac{1}{5}\right)^{300}=\left(\frac{1}{5}^3\right)^{100}=\frac{1}{125}^{100}\)
Vì \(\frac{1}{243}<\frac{1}{125}=>\frac{1}{243}^{100}<\frac{1}{125}^{100}=>\left(\frac{1}{3}\right)^{500}<\left(\frac{1}{5}\right)^{300}\)
3-500=(35)-100= 243-100
5-300= (53)-100 =125-100
243>125 => 243-100<125-100
Hay 3-500 <5-300
\(5^{300}=\left(5^3\right)^{100}=125^{100}< 243^{100}=\left(3^5\right)^{100}=3^{500}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}< 243^{100}=\left(3^5\right)^{100}=3^{500}\)