Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+y^4\)
\(=x^4+y^4+2x^2y^2-2x^2y^2\)
\(=\left[\left(x^2\right)^2+2x^2y^2+\left(y^2\right)^2\right]-2x^2y^2\)
\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)
\(=18^2-2.5^2\)
\(=324-2.25\)
\(=324-50\)
\(=274\)
a) \(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y\cdot2x=4xy\)
b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
\(=a^3+3a^2b+3ab^2+b^3+a^2-3a^2b+3ab^2-b^3-2a^3\)
\(=6ab^2\)
c) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-\left(18^8-1\right)=1\)
a) \(\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\)
\(=x^2+2xy+y^2-x^2+2xy-y^2\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(2xy+2xy\right)\)
\(=4xy\)
a: \(=3x^2-3y^2=3\left(x-y\right)\left(x+y\right)\)
b: \(=\left(4x^2-7x-50\right)^2-\left(16x^4+56x^3+49x^2\right)\)
\(=\left(4x^2-7x-50\right)^2-\left(4x^2+7x\right)^2\)
\(=\left(4x^2-7x-50-4x^2-7x\right)\left(4x^2-7x-50+4x^2+7x\right)\)
\(=\left(-14x-50\right)\left(8x^2-50\right)\)
\(=-4\left(7x+25\right)\left(2x-5\right)\left(2x+5\right)\)
d: \(=\left(x^2+y^2\right)^3-8x^3y^3\)
\(=\left(x^2+y^2-2xy\right)\left[x^4+2x^2y^2+y^4+2x^3y^2+2x^2y^3+4x^2y^2\right]\)
\(=\left(x-y\right)^2\cdot\left[x^4+y^4+6x^2y^2+2x^3y^2+2x^2y^3\right]\)
ta có:
\(\left(x^2+y^2\right)^2=x^4+2\left(xy\right)^2+y^2\)
\(\Leftrightarrow18^2=x^4+y^4+2.15^2\)
\(\Leftrightarrow324=x^4+y^4+450\)
\(\Leftrightarrow x^4+y^4=324-450\)
\(\Leftrightarrow x^4+y^4=-126\)
\(x^2+y^2=18\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=18^2\)
\(x^4+2x^2y^2+y^4=18^2\)
tự thay số vào tính nhé ~
a: \(=3x^2-3y^2=3\left(x-y\right)\left(x+y\right)\)
c: \(=\left(x^2-y^2\right)^2-10\left(x^2-y^2\right)+25-4\left(x^2y^2+4xy+4\right)\)
\(=\left(x^2-y^2-5\right)^2-4\left(xy+2\right)^2\)
\(=\left(x^2-y^2-5-2xy-4\right)\left(x^2-y^2-5+2xy+4\right)\)
\(=\left(x^2-y^2-2xy-9\right)\left(x^2+2xy-y^2-1\right)\)
\(50\left(y+4\right)^2-18\left(y-2\right)^2\)
\(=50\left(y^2+8y+16\right)-18\left(y^2-4y+4\right)\)
\(=50y^2+400y+800-18y^2+72y-72\)
\(=32y^2+472y+728\)