Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x-5| = 18 + (-16)
\(A=\left(x+3\right)^2+2\left|y-1\right|+3\ge3\forall x,y\)
Dấu '=' xảy ra khi x=-3 và y=1
\(A=\left(x+3\right)^2+2\left|y-1\right|+3\ge3\forall x,y\)
Dấu '=' xảy ra khi x=-3 và y=1
\(\left|x-5\right|=18+2\times\left(-8\right)\)
|x - 5| = 18 - 16
|x - 5| = 2
x - 5 = \(\pm\) 2
\(\left[\begin{array}{nghiempt}x-5=2\\x-5=-2\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=5+2\\x=5-2\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=7\\x=3\end{array}\right.\)
Bài 2:
a) \(A=\frac{10n}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
Vậy để A nguyên thì \(5n-3\inƯ\left(6\right)\)
Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}
=>5n-3={1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | \(\frac{4}{5}\) | \(\frac{2}{5}\) | 1 | \(\frac{1}{5}\) | \(\frac{6}{5}\) | 0 | \(\frac{9}{5}\) | -\(\frac{3}{5}\) |
Vậy \(x=\left\{\frac{4}{5};\frac{2}{5};1;\frac{1}{5};\frac{6}{5};0;\frac{9}{5};-\frac{3}{5}\right\}\) thì A nguyên
15-2n:n+1
2(n+1):n+1
15-2n-2(n+1):n+1
15-2n-2n-2:n+1
15-2:n+1
13:n+1
→n+1={1;13}
→n={9;12}
y+z+1x=x+z+2y=x+y−3z=1x+y+zy+z+1x=x+z+2y=x+y−3z=1x+y+z(đk x+y+z≠0≠0
⇒y+z+1x=x+z+2y=x+y−3z=y+z+1+x+z+2+x+y−3x+y+z=2⇒y+z+1x=x+z+2y=x+y−3z=y+z+1+x+z+2+x+y−3x+y+z=2
⇒1x+y+z=2⇒x+y+z=0,5⇒1x+y+z=2⇒x+y+z=0,5
⇒y+z=0,5−x,x+z=0,5−y,x+y=0,5−z⇒y+z=0,5−x,x+z=0,5−y,x+y=0,5−z
⇒0,5−x+1x=2⇒1,5−xx=2⇒1,5−x=2x⇒3x=1,5⇒x=12⇒0,5−x+1x=2⇒1,5−xx=2⇒1,5−x=2x⇒3x=1,5⇒x=12
⇒0,5−y+2y=2⇒2,5−yy=2⇒2,5−y=2y⇒3y=2,5⇒y=56⇒0,5−y+2y=2⇒2,5−yy=2⇒2,5−y=2y⇒3y=2,5⇒y=56
⇒z=0,5−12−56=−56⇒z=0,5−12−56=−56
Vậy x=12,y=56,z=−56
\(6n+9⋮4n-1\)
\(\Rightarrow2.\left(6n+9\right)⋮4n-1\)
\(\Rightarrow12n+18⋮4n-1\)
\(\Rightarrow12n-3+21⋮4n-1\)
\(\Rightarrow3.\left(4n-1\right)+21⋮4n-1\)
Vì \(3.\left(4n-1\right)⋮4n-1\Rightarrow21⋮4n-1\)
Mà 4n - 1 chia 4 dư 3; \(4n-1\ge-1\) do \(n\in N\)
\(\Rightarrow4n-1\in\left\{-1;3;7\right\}\)
\(\Rightarrow4n\in\left\{0;4;8\right\}\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
bạn ghi lại đề đi bạn