Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách này cũng đúng nhưng có cách khác nhanh hơn
S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....
Gộp 4 số liên tiếp lại rồi C/M
Chúc học tốt
Ta có :
\(A=\frac{5^5+2}{5^5-1}=\frac{5^5-1}{5^5-1}+\frac{3}{5^5-1}\)
\(=1+\frac{3}{5^5-1}\)
\(B=\frac{5^5}{5^5-3}=\frac{5^5-3}{5^5-3}+\frac{3}{5^5-3}\)
\(=1+\frac{3}{5^5-3}\)
\(5^5-1>5^5-3\)
\(\Rightarrow\frac{3}{5^5-1}< \frac{3}{5^5-3}\)
\(\Rightarrow1+\frac{3}{3^5-1}< 1+\frac{3}{3^5-3}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
\(A=\frac{5^5+2}{5^5-2}>\frac{5^5}{5^5-1}>\frac{5^5}{5^5-3}=B\Rightarrow A>B\)
lý Kì Anh Bạn nhầm rồi nhé :)
\(5^5-1>5^5-3\)nên \(\frac{5^5}{5^5-1}< \frac{5^5}{5^5-3}\)
từ (1) và (2)
=> S ⋮5
mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi
nên đánh (2) vào"=>S⋮5"
Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"
1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.
Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)
ghi kết quả này chắc 100 năm quá 5^2004 tới 1401 chữ số lận
- 5% = - 0,05
=-0.05
nhớ tích á nha