Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>10 chia hết cho n+1
\(\Leftrightarrow n+1\in\left\{1;2;5;10\right\}\)
hay \(n\in\left\{0;1;4;9\right\}\)
b: \(\Leftrightarrow2n^2+2n+6n+6+6⋮n+1\)
=>\(n+1\in\left\{1;2;3;6\right\}\)
hay \(n\in\left\{0;1;2;5\right\}\)
Bài 1: Mình không biết làm.
Bài 2:
TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)
=> (n+20102011) chia hết cho 2.
Nên (n+20102011)(n+2011) chia hết cho 2
TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)
=> n + 2011 chia hết cho 2
Nên (n+20102011)(n+2011) chia hết cho 2
Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
Ta có:
A=\(n^2\)+n+1
A=n.(n+1)+1
a) do n.(n+1) là tích 2 số tự nhiên liên tiếp => n.(n+1) chia hết cho 2 ; 1ko chia hết cho 2
=> n.(n+1)+1 ko chia hết cho 2
=> A KO CHIA HẾT CHO 2
b) do n.(n+1) là tích 2 số tự nhiên liên tiếp => n.(n+1) chỉ có thể tận cùng là 0,2,6
=>n.(n+1)+1 chỉ có thể tận cùng là 1;3;7 ko chia hết cho 5
=> A ko chia hết cho 5
3B=3^1+3^2+3^3+.....+3^119+3^120
3B-B=(3^1+3^2+3^3+.....+3^119+3^120)-(1+3^1+3^2+3^3+.....+3^119)
2B=3^120-1
B=3^120-1/2
\(B=1+3^1+3^2+...+3^{118}+3^{119}\)
\(3B=3+3^2+3^3+..+3^{120}\)
\(3B-B=\left(3+3^2+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)
\(2B=1+3^{120}\)
Giả sử \(n^2+5.n+5⋮25\left(1\right)\)
\(\Rightarrow n^2+5.n+5⋮5\)
Do \(5.n⋮5;5⋮5\Rightarrow n^2⋮5\)
Mặt khác, 5 là số nguyên tố \(\Rightarrow n⋮5\)
\(\Rightarrow n^2⋮25;5.n⋮25\) mà \(5⋮̸25\)
\(\Rightarrow n^2+5.n+5⋮̸25\), trái với (1)
Vậy \(n^2+5.n+5⋮̸25\forall n\in N\left(đpcm\right)\)
Ta có: n2 + n = n . n + n = n.(n + 1)
Ta nhận thấy n.(n + 1) là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng có thể là 0 ; 2 ; 6.
Do đó, n.(n + 1) + 6 có thể có chữ số tận cùng là 2 ; 6 ; 8.
Vì tận cùng là 2 ; 6 ; 8 không chia hết cho 5 nên suy ra n2 + n + 6 không chia hết cho 5.
Vậy \(n^2+n+6⋮5\).
Đúng thì tick nha letienluc!
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.
Câu a )
S = 5 + 52 +..... + 52012
=> S \(⋮5\)
S = 5 + 52 +..... + 52012
S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )
S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )
S = 5 x 26 + 52 x 26 + ................ + 52010 x 26
S = 26 ( 5 + 52 + .... + 52010 )
=> S\(⋮26\)
=>\(S⋮13\)( do 26 = 13 x 2 )
Do ( 5 , 13 ) = 1
=> \(S⋮5x13\)
=> \(S⋮65\)
5,
Ta có :n2 + n + 6 = n(n + 1 ) + 6
Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) không có c/s tận cùng là 9 và 4
=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )
Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N
6,
Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12
Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3
Số có tận cùng là 387 thì chia cho 8 sẽ dư 3
=> các số có tận cùng là 387