\(\in\)N thì n2+n+6 không chia hết cho 5

6,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

5, 

Ta có :n2 + n + 6 = n(n + 1 ) + 6

Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp

=> n(n+1) không có c/s tận cùng là 9 và 4

=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )

Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N

2 tháng 1 2019

6, 

Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12

Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3

Số có tận cùng là 387 thì chia cho 8 sẽ dư 3

=> các số có tận cùng là 387

19 tháng 11 2022

Bài 2:

a: =>10 chia hết cho n+1

\(\Leftrightarrow n+1\in\left\{1;2;5;10\right\}\)

hay \(n\in\left\{0;1;4;9\right\}\)

b: \(\Leftrightarrow2n^2+2n+6n+6+6⋮n+1\)

=>\(n+1\in\left\{1;2;3;6\right\}\)

hay \(n\in\left\{0;1;2;5\right\}\)

29 tháng 3 2019

Bài 1: Mình không biết làm.

Bài 2:

TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)

=> (n+20102011) chia hết cho 2.

Nên (n+20102011)(n+2011) chia hết cho 2

TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)

=> n + 2011 chia hết cho 2

Nên (n+20102011)(n+2011) chia hết cho 2

Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N

20 tháng 9 2017

bài 4

Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.

Từ 0 đến 999 có 100 chục nên có :  

4.100 = 400 (số).

Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5

bài 5

Gọi thương của số tự nhiên x tuần tự là a và b 

Theo đề, ta có: 

x = 4a + 1 

x = 25b + 3 

<=> 4a + 1 = 25b + 3 

4a = 25b + 2 

a = (25b + 2)/4 

b = 2 ; a = 13 <=> x = 53 

b = 6 ; a = 38 <=> x = 153 

b = 10 ; a = 63 <=> x = 253 

b = 14 ; a = 88 <=> x = 353 

b = 18 ; a = 113 <=> x = 453 


Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.

 
20 tháng 9 2017

MÌNH THẤY NGÀY 20/9/2017 NÊN CHẮC LÀ BẠN ĐÃ CÓ CÂU TRẢ LỜI

6 tháng 10 2016

Ta có: 

A=\(n^2\)+n+1

A=n.(n+1)+1

a) do n.(n+1) là tích 2 số tự nhiên liên tiếp => n.(n+1) chia hết cho 2 ; 1ko chia hết cho 2

=>  n.(n+1)+1 ko chia hết cho 2

=>  A KO CHIA HẾT CHO 2

b) do n.(n+1) là tích 2 số tự nhiên liên tiếp => n.(n+1) chỉ có thể tận cùng là 0,2,6

=>n.(n+1)+1 chỉ có thể tận cùng là 1;3;7 ko chia hết cho 5

=> A ko chia hết cho 5

6 tháng 10 2016

ko ai giải thì sao bây giờ

11 tháng 12 2018

3B=3^1+3^2+3^3+.....+3^119+3^120

3B-B=(3^1+3^2+3^3+.....+3^119+3^120)-(1+3^1+3^2+3^3+.....+3^119)

2B=3^120-1

B=3^120-1/2

\(B=1+3^1+3^2+...+3^{118}+3^{119}\)

\(3B=3+3^2+3^3+..+3^{120}\)

\(3B-B=\left(3+3^2+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)

\(2B=1+3^{120}\)

20 tháng 10 2016

Giả sử \(n^2+5.n+5⋮25\left(1\right)\)

\(\Rightarrow n^2+5.n+5⋮5\)

Do \(5.n⋮5;5⋮5\Rightarrow n^2⋮5\)

Mặt khác, 5 là số nguyên tố \(\Rightarrow n⋮5\)

\(\Rightarrow n^2⋮25;5.n⋮25\)\(5⋮̸25\)

\(\Rightarrow n^2+5.n+5⋮̸25\), trái với (1)

Vậy \(n^2+5.n+5⋮̸25\forall n\in N\left(đpcm\right)\)

 

15 tháng 10 2017

Ta có: n2 + n = n . n + n = n.(n + 1)

Ta nhận thấy n.(n + 1) là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng có thể là 0 ; 2 ; 6.

Do đó, n.(n + 1) + 6 có thể có chữ số tận cùng là 2 ; 6 ; 8.

Vì tận cùng là 2 ; 6 ; 8 không chia hết cho 5 nên suy ra n2 + n + 6 không chia hết cho 5.

Vậy \(n^2+n+6⋮5\).

hihi Đúng thì tick nha letienluc!vui

3,

b, Có : abcd = 100ab + cd

= 100.2.cd + cd

= 200cd + cd

= ( 200 + 1 ). cd

= 201. cd

= 3.67 + cd

suy ra abcd chia hết cho 67.

a, Có : abc = abc0

abc0 = 1000a + bc0

= 999a + a + bc0

= 999a + bca

= 27.37a + bca

Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27

suy ra 27. 37a + bca chia hết cho 27

suy ra bca chia hết cho 27.

23 tháng 3 2017

câu b lên mạng có thể tìm thấy câu tương tự

Câu a ) 

S = 5 + 52 +..... + 52012

=> S \(⋮5\)

S = 5 + 52 +..... + 52012

S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )

S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )

S = 5 x 26 + 52 x 26 + ................ + 52010 x 26

S = 26 ( 5 + 52 + .... + 52010 )

=> S\(⋮26\)

=>\(S⋮13\)( do 26 = 13 x 2 )

Do ( 5 , 13 ) = 1

=> \(S⋮5x13\)

=> \(S⋮65\)