\(\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

\(\text{Ta có : }\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{z}{y+x}\\ \Rightarrow\dfrac{y+z}{x}=\dfrac{x+z}{y}=\dfrac{y+x}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{y+z}{x}=\dfrac{x+z}{y}=\dfrac{y+x}{z}\\ =\dfrac{\left(y+z\right)+\left(x+z\right)+\left(y+x\right)}{x+y+z}\\ =\dfrac{y+z+x+z+y+x}{x+y+z}\\ =\dfrac{\left(y+y\right)+\left(z+z\right)+\left(x+x\right)}{x+y+z}\\ =\dfrac{2y+2z+2x}{x+y+z}\\ =\dfrac{2\left(x+y+z\right)}{x+y+z}\\ =2\\ \)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z}{x}=2\\\dfrac{x+z}{y}=2\\\dfrac{y+x}{z}=2\end{matrix}\right.\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{y+x}{z}=2+2+2=6\)

Vậy \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{y+x}{z}=6\)

NV
9 tháng 12 2018

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{1}{3}=\dfrac{x+y}{\left(x+y\right)+2\left(z+t\right)}\)

\(\Rightarrow\left(x+y\right)+2\left(z+t\right)=3\left(x+y\right)\)

\(\Rightarrow2\left(z+t\right)=2\left(x+y\right)\Rightarrow\dfrac{x+y}{z+t}=1\)

Chứng minh tương tự ta được:

\(\dfrac{y+z}{x+t}=1;\dfrac{z+t}{x+y}=1;\dfrac{t+x}{y+z}=1\)

\(\Rightarrow P=1+1+1+1=4\)

29 tháng 12 2018

+Xét x+y+z+t=0

\(\Rightarrow\)\(\left\{{}\begin{matrix}z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\\x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\end{matrix}\right.\)

Khi đó M=-4

+Xét x+y+z+t\(\ne\)0

ADTC dãy tỉ số bằng nhau ta có

\(\dfrac{x}{y+z+t}\)=\(\dfrac{y}{x+y+t}\)=\(\dfrac{z}{x+y+t}\)=\(\dfrac{z}{x+y+t}\)=\(\dfrac{x+y+z+t}{3.\left(x+y+z+t\right)}\)=\(\dfrac{1}{3}\)

+Với\(\dfrac{x}{y+z+t}\)=\(\dfrac{1}{3}\)

\(\Rightarrow\)3x=y+z+t

\(\Rightarrow\)4x=x+y+z+t

Chứng minh tương tự ta có

4y=x+y+z+t

4z=x+y+z+t

4t=x+y+z+t

Do đó x=y=z=t

Khi đó M=4

16 tháng 6 2017

Ta có: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+t+x}=\dfrac{t}{y+x+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{y+t+x}=\dfrac{x+y+z+t}{y+x+z}\)+) Xét \(x+y+z+t=0\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\end{matrix}\right.\)

\(\Rightarrow A=-1\)

+) Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

\(\Rightarrow A=1\)

Vậy A = -1 hoặc A = 1

16 tháng 6 2017

Ta có:\(\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

Nếu x+y+z+t\(\ne\)0 thì y+z+t=z+t+x=t+x+y=x+y+z

=>x=y=z=t nên P=1+1+1+1=4

Nếu X+y+z+t=0 thì P=-4

30 tháng 3 2018

+) Nếu \(x+y+z\ne0\)

Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}=\dfrac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+z-x}{x}=1\\\dfrac{x+z-y}{y}=1\\\dfrac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z-x=x\\x+z-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\x+z=2y\\x+y=2z\end{matrix}\right.\)

\(\Leftrightarrow B=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)\)

\(\Leftrightarrow B=\dfrac{2z}{y}.\dfrac{2x}{z}.\dfrac{2y}{x}=2\)

+) Nếu \(x+y+z\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{-z}{y}.\dfrac{-x}{z}.\dfrac{-y}{x}=-1\)

Vậy ..

30 tháng 3 2018

Hằng à,t chưa thấy đứa này ngu như mày

\(\dfrac{2x.2y.2z}{xyz}=2\) thì học hành cái qq j

1 tháng 11 2017

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)

\(\Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\)

\(\Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\\\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+y+z\right)=y\left(x+y+z\right)\\y\left(x+y+z\right)=z\left(x+y+z\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x+y+z\right)=0\\\left(y-z\right)\left(x+y+z\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y+z=0\end{matrix}\right.\\\left[{}\begin{matrix}y=z\\x+y+z=0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y=z\\x+y+z=0\end{matrix}\right.\)

\(\circledast\) Với \(x=y=z\) thì \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

\(\circledast\) Với \(x+y+z=0\) thì\(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

Khi đó \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\dfrac{-xyz}{xyz}=-1\)

14 tháng 4 2017

Có: \(\dfrac{y+z-x}{x}=\dfrac{x+z-y}{y}=\dfrac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z-x}{x}=\dfrac{x+z-y}{y}=\dfrac{x+y-z}{z}=\dfrac{x+y+z}{x+y+z}=1\)

23 tháng 5 2017

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y+z}{z}\)

\(\Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2=\)

\(\dfrac{y+z+x}{x}=\dfrac{z+x+y}{y}=\dfrac{x+y+z}{z}\)

\(\Rightarrow\)x=y=z\(\Rightarrow\)\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\)

\(\Rightarrow\)B=(1+1)(1+1)(1+1)=8

3 tháng 2 2019

\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)