Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PT\Leftrightarrow3x^2+3x-2x^2-4x=-1-x\Leftrightarrow x^2=-1\left(\text{vô nghiệm}\right)\)
Vậy: ...
\(b,PT\Leftrightarrow4x\left(x-2019\right)-\left(x-2019\right)=0\Leftrightarrow\left(x-2019\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy: ...
\(c,PT\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy: ...
\(d,PT\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy: ...
\(e,PT\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy: ...
\(f,PT\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\Leftrightarrow x=\pm\dfrac{3}{5}\)
Vậy: ...
câu c sao tính ra vậy đc vậy k hiểu giải thích hộ e đi 36 đâu mất òi
a/ \(4x\left(x-2019\right)-x+2019=0\)
\(\Leftrightarrow4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\Leftrightarrow\left(x-2019\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2019=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2019\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy..
b/ \(3x\left(2x-3\right)=6-4x\)
\(\Leftrightarrow3x\left(2x-3\right)-2\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy..
a, x2(x - 3) + 12 - 4x = 0
<=> x2(x - 3) + 4(3 - x) = 0
<=> x2(x - 3) - 4(x - 3) = 0
<=> (x - 3)(x2 - 4) = 0
<=> x - 3 = 0 hoặc x2 - 4 = 0
<=> x = 3 x2 = 4
<=> x = 3 x = 2 hoặc x = -2
b, 2(x + 5) - x2 - 5x = 0
<=> 2(x + 5) - x(x + 5) = 0
<=> (x + 5)(2 - x) = 0
<=> x + 5 = 0 hoặc 2 - x = 0
<=> x = -5 x = 2
c, 2x(x + 2019) - x - 2019 = 0
<=> 2x(x + 2019) - (x + 2019) = 0
<=> (x + 2019)(2x - 1) = 0
<=> x + 2019 = 0 hoặc 2x - 1 = 0
<=> x = -2019 2x = 1
<=> x = -2019 x = 1/2
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
\(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}}\)
\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT
Ta chứng minh 1 bổ đề sau: Với a;b lớn hơn hoặc bằng 1 thì \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
Thật vậy: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow a^2+a^3b+b^2+b^3a+2+2ab\ge2a^2+2b^2+2a^2b^2+2\)
\(\Leftrightarrow a^3b+b^3a+2ab-a^2-b^2-2a^2b^2\ge0\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)(đúng với a;b>=1)
Trở lại bđt trong bài: \(\frac{2019}{2019+x^2}+\frac{2019}{2019+y^2}\ge\frac{4038}{2019+xy}\)
\(\Leftrightarrow\frac{1}{2019+x^2}+\frac{1}{2019+y^2}\ge\frac{2}{2019+xy}\) bđt này tương tự với bđt vừa cm trong bài,với x;y là hoán vị của a;b và 2019 có vai trò như 1
4x ( x- 2019 ) - x + 2019 = 0
4 x ( x-2019) - ( x - 2019) = 0
( x - 2019)( 4x - 1) = 0
\(\left[{}\begin{matrix}x-2019=0\\4x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2019\\4x=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2019\\x=\dfrac{1}{4}\end{matrix}\right.\)
Kết luận : \(x\)\(\in\) { \(\dfrac{1}{4}\); 2019}
\(4x\times\left(x-2019\right)-x+2019=0\)
\(4x\times\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(4x-1\right)\times\left(x-2019\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-1=0\\x-2019=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=0+1\\x=0+2019\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=1\\x=2019\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1:4\\x=2019\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=2019\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{4};x=2019\)