K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

\(4x\left(x-2018\right)-x+2018=0\)

\(4x\left(x-2018\right)-\left(x-2018\right)=0\)

\(\left(x-2018\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)

17 tháng 10 2020

xài dấu [ thì nên dùng dấu tương đương nha @greninja

\(4x\left(x-2018\right)-x+2018=0\)

\(\Leftrightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(x-2018\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)

Vậy x=1/4 hoặc x=2018

12 tháng 12 2018

Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

    \(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

   \(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)

Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)

               \(=0+\left(-1\right)^{2018}+1^{2018}\)

               \(=2\)

12 tháng 5 2018

Áp dụng bất đẳng thức Cauchy , ta có 

\(M=\frac{x}{\left(x+2018\right)^2}\le\frac{x}{\left(2.\sqrt{a.2018}\right)^2}=\frac{x}{4.x.2018}=\frac{1}{8072}\)

Đẳng thức xảy ra <=> x = 2018 

12 tháng 5 2018

có thể rõ hơn 1 chút hông bạn mk chưa hiểu lắm

1 tháng 5 2018

Chứng minh Nesbit 4 số rồi áp dụng nhé 

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{a\left(b+c\right)}+\frac{b^2}{b\left(c+d\right)}+\frac{c^2}{c\left(d+a\right)}+\frac{d^2}{d\left(a+b\right)}\)  (*)

Theo Cauchy - Schwarz dạng engel , ta có 

(*) \(\ge\frac{\left(a+b+c+d\right)^2}{a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)}\) 

\(=\frac{2\left(a+c\right)\left(b+d\right)+\left(a+c\right)^2+\left(b+d\right)^2}{\left(a+c\right)\left(b+d\right)+2ac+2bd}\ge\frac{2\left(a+c\right)\left(b+d\right)+4ac+4bd}{\left(a+c\right)\left(b+d\right)+2ac+2bd}=2\)

Đẳng thức xảy ra <=> a = c và b = d 

Áp dụng bất đẳng thức Nesbit cho 4 số ,ta có 

\(\frac{2018}{x+y}+\frac{x}{y+2017}+\frac{y}{2017+2018}+\frac{2017}{x+2018}\ge2\)

Đẳng thức xảy ra <=> y = 2018 , x = 2017 

19 tháng 7 2017

a) \(4x\left(x-2018\right)-x+2018=0\)

\(=>4x\left(x-2018\right)-\left(x-2018\right)=0\)

\(=>\left(4x-1\right)\left(x-2018\right)=0\)

\(=>\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}}\)

    vậy \(x=\frac{1}{4}\) hoặc \(x=2018\)

b)   \(\left(x+1\right)^2=x+1\)

\(=>x^2+2x+1=x+1\)

\(=>x^2+2x+1-x-1=0\)

\(=>x^2+x=0\)

\(=>x\left(x+1\right)=0\)

\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

   vậy \(x=0\)hoặc       \(x=-1\)

19 tháng 7 2017


a,
4x(x-2018)-(x-2018)=0
<=>  (4x-1)(x-2018)=0
<=> 4x-1=0   hoặc x-2018=0
x1=1/4 ; x2=2018 là nghiệm của pt
b, 
(x+1)2 =x+1
=> (x+1)2-(x+1)=0
<=>(x+1)(x+1-1)=0
x1=-1 ; x2=0 là nghiệm của pt
ko cần hằng đẳng thức j cả 

18 tháng 10 2018

\(4x\left(x-2018\right)-x+2018=0\)

\(\Rightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)

\(\Rightarrow\left(x-2018\right)\left(4x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\4x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2018\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy.....................

17 tháng 10 2018

\(4x\left(x-2018\right)-x+2018=0\)

\(\Rightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)

\(\Rightarrow\left(x-2018\right)\left(4x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\4x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2018\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy ..................................................

#Kαrμto

23 tháng 9 2020

Ta có: \(2020=x\Rightarrow2019=x-1\)

Thay vào ta được:

\(D=x^{2020}+\left(x-1\right)^{2019}+\left(x-1\right)^{2018}+...+\left(x-1\right)x+1\)

\(D=x^{2020}+x^{2020}-x^{2019}+x^{2019}-x^{2018}+...+x^2-x+1\)

\(D=2x^{2020}-x+1\)

\(D=2\cdot2020^{2020}-2020+1\)

Bạn xem lại đề nhé

23 tháng 9 2020

x = 2020 => 2019 = x - 1

Thế vào D ta được

D = x2020 + ( x - 1 )x2019 + ( x - 1 )x2018 + ... + ( x - 1 )x + 1

= x2020 + x2020 - x2019 + x2019 - x2018 + ... + x2 - x + 1

= 2x2020 - x + 1 

= 2.20202020 - 2020 + 1 

= 2.20202020 - 2019 ( chắc đề sai (: )