Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: 12-10x=25-30x
=>20x=13
=>x=13/20
3: \(3\left(2x+3\right)-2\left(4x-5\right)=10x+21\)
=>6x+9-8x+10=10x+21
=>10x+21=-2x+19
=>12x=-2
=>x=-1/6
4: \(\Leftrightarrow25x-15-6x+12=11-5x\)
=>19x-3=11-5x
=>24x=14
=>x=7/12
5: \(\Leftrightarrow8-12x-5+10x=4-6x\)
=>4-6x=-2x+3
=>-4x=-1
=>x=1/4
6: \(\Leftrightarrow32x-24-6+9x=13-40x\)
=>41x-30=13-40x
=>81x=43
=>x=43/81
7: \(\Leftrightarrow10x-5+20x=5x-11\)
=>30x-5=5x-11
=>25x=-6
=>x=-6/25
a; -2\(x\) - 3.(\(x-17\)) = 34 - 2.( - \(x\) + 25)
- 2\(x\) - 3\(x\) + 51 = 34 + 2\(x\) - 50
2\(x\) + 2\(x\) + 3\(x\) = - 34 + 50 + 51
7\(x\) = 67
\(x\) = 67 : 7
\(x\) = \(\dfrac{67}{7}\)
Vậy \(x\) = \(\dfrac{67}{7}\)
b; 17\(x\) + 3.(- 16\(x\) - 37) = 2\(x\) + 43 - 4\(x\)
17\(x\) - 48\(x\) - 111 = 2\(x\) - 4\(x\) + 43
- 31\(x\) - 2\(x\) + 4\(x\) = 111 + 43
- \(x\) x (31 + 2 - 4) = 154
- \(x\) x (33 - 4) = 154
- \(x\) x 29 = 154
- \(x\) = 154 : (-29)
\(x\) = - \(\dfrac{154}{29}\)
Vậy \(x=-\dfrac{154}{29}\)
\(2x-3\left(2x+1\right)=4x-5\left(x-3\right)\)
\(\Leftrightarrow2x-6x-3=4x-5x+15\)
\(\Leftrightarrow2x-6x+5x-4x=15+3\)
\(\Leftrightarrow-3x=18\)
\(\Leftrightarrow-x=6\)
\(\Leftrightarrow x=-6\)
P/s: Hoq chắc :(
\(\Rightarrow2x-6x-3=4x-5x+15\)
\(\Rightarrow-4x-3=-x+15\)
\(\Rightarrow-3x=18\Rightarrow x=-6\)
3(2x+3)(3x-5)<0
\(\Rightarrow\left(3x+3\right)\left(3x-5\right)< 0\)
Mà \(3x+3>3x-5\)
\(\Rightarrow\hept{\begin{cases}3x+3>0\\3x-5< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x>-3\\3x< 5\end{cases}}\)
\(\Rightarrow-1< x< \frac{5}{3}\)
\(2x^2-4x=2x\left(x-2\right)>0\)
\(\Rightarrow x\left(x-2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}x< 0;x-2< 0\\x>0;x-2>0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x< 0\\x>2\end{cases}}\)
P(x) + Q(x)= ( x^5 - 2x^2 + 7x^4 - 9x^3 - 1/4x) + ( 5x^4 - x^5 + 4x^2 - 2x^3 - 1/4)
= x^5 - 2x^2 + 7x^4 - 9x^3 - 1/4x + 5x^4 - x^5 + 4x^2 - 2x^3 - 1/4
= ( x^5 - x^5 ) - ( 2x^2 + 4x^2) + ( 7x^4 + 5x^4) - ( 9x^3 - 2x^3) - 1/4x - 1/4
= 6x^2 + 12x^4 - 6x^3 - 1/4x - 1/4
P(x) - Q(x)= ( x^5 - 2x^2 + 7x^4 - 9x^3 -1/4x) - ( 5x^4 - x^5 + 4x^2 - 2x^3 -1/4)
= x^5 - 2x^2 + 7x^4 - 9x^3 - 1/4x - 5x^4 + x^5 - 4x^2 + 2x^3 + 1/4
= ( x^5 + x^5) - ( 2x^2 - 4x^2) + ( 7x^4 - 5x^4) - ( 9x^3 + 2x^3) - 1/4x + 1/4
= 2x^5 - (-2)x^2 + 2x^4 - 11x^3 - 1/4x + 1/4
P(x)=x^5+ 7x^4- 9x^3+ 2x^2-1/4x-0
Q(x)=(-x^5+5x^4- 2x^3+ 4x^2+0x-1/4
= 12x^4-11x^3+ 6x^2-1/4x-1/4
P(x) = x^5 - 2x^2 + 7x^4 - 9x^3 - 1/4x
=x5+7x4-9x3-2x2-1/4x
Q(x) = 5x^4 - x^5 + 4x^2 - 2x^3 - 1/4
=-x5+5x4-2x3+4x2-1/4
P(x)+Q(x)=x5+7x4-9x3-2x2-1/4x -x5+5x4-2x3+4x2-1/4
=x5-x5+7x4+5x4-9x3-2x3-2x2+4x2-1/4x-1/4
=12x4-11x3+2x2-1/4x-1/4
P(x)-Q(x)=x5+7x4-9x3-2x2-1/4x +x5-5x4+2x3-4x2+1/4
=x5+x5+7x4-5x4-9x3+2x3-2x2-4x2-1/4x-1/4
=2x5+2x4-7x3-6x2-1/4x-1/4
Ta có ( 4x + 5 ) ⋮ ( 2x + 1 )
⇒ ( 4x + 2 + 3 ) ⋮ ( 2x + 1 )
Vì ( 4x + 2 ) ⋮ ( 2x + 1 ) ⇒ 3 ⋮ ( 2x + 1 ) hay ( 2x + 1 ) ϵ Ư( 3 ) = { 1; 3 }
Nếu 2x + 1 = 1 ⇒ x = 0
Nếu 2x + 1 = 3 ⇒ x = 1
Vậy x ϵ { 0; 1 } để ( 4x + 5 ) ⋮ ( 2x + 1 )