Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì x-2/x-1 = x+4/x+7 nên: (x-2)(x+7) = (x+4)(x-1)
=> x^2 - 2x + 7x - 14 = x^2 + 4x - x - 4
=> 5x - 14 = 3x - 4
=> 5x - 3x = -4 + 14
=> 2x = 10
=> x = 5
Vậy x = 5
b) Ta có:
+) 4x = 3y => x/3 = y/4 => x/15 = y/20 (*)
+) 7y = 5z => y/5 = z/7 => y/20 = z/28 (**)
Từ (*) và(**) Suy ra x/15 = y/20 = z/28
Áp dunhj tính chất dãy tỉ số bằng nhau và 2x - 3y +z = 6 ta có:
x/15 = y/20 = z/28 = (2x-3y+z) / (2.15-3.20+28) = 6/-2 = -3
Do đó:
+) x/15 = -3 => x = -3.15 = -45
+) y/20 = -3 => y = -3.20 = -60
+) z/28 = -3 => z = -3.28 = -84
Vậy ...
1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21
Aps dụng tính chất của dãy tỉ số bằng nhau:
x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4
=> x/6 = 7/4 => x= 21/2
y/3 = 7/4 -> y= 21/4
z/3 = 7/4 -> z= 21/4
1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)
\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)
\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)
\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)
Vậy x=-1/6 ; y=1/4 và z = 1/3
3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)
\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)
\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)
Vậy x=7/2 ; y=4 và z=21/2
4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)
\(\frac{x-1}{3}=2\Rightarrow x=7\)
\(\frac{y-2}{4}=2\Rightarrow y=10\)
\(\frac{z-3}{5}=2\Rightarrow z=13\)
Vậy x=7 ; y=10 và z=13
a ) 2x = 3y - 2x và x + y = 14
2x = 3y - 2x
2x + 2x = 3y
4x = 3y
=> x/3 = y/4
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
x/3 = y/4 = x+y/3+4 = 14/7 = 2
x = 3 .2 = 6
y = 4 . 2 = 8
b ) 6x - 2y = 3y - 4x
6x + 4x = 3y + 2y
10x = 5y
=> 2x = y
=> x/1 = y/2
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/1 = y/2 = x+y/1+2 = -99/3 = -33
x = 1 . -33 = -33
y = 2 . -33 = -66
a) Ta có: 2x = 3y - 2x => 3y = 2x + 2x => 3y = 4x => \(\frac{y}{4}=\frac{x}{3}\)
Áp dụng t/c dãy tỉ số = nhau:
\(\frac{y}{4}=\frac{x}{3}=\frac{y+x}{4+3}=\frac{14}{7}=2\)
\(\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot4=8\end{cases}}\)
Vậy . . . . . . . . . . . . . . . . . . . .
b) Ta có: 6x - 2y = 3y - 4x => 6x - 4x = 3y + 2y => 2x = 5y
Sau đó làm như trên nhé
a) \(\frac{2x}{3y}=\frac{-1}{3}\) và 2x + 3y = 7
Ta có : \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{\left(-1\right)+3}=\frac{7}{2}\)
=> \(\hept{\begin{cases}2x=\frac{7}{2}\cdot\left(-1\right)=-\frac{7}{2}\\3y=\frac{7}{2}\cdot3=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-\frac{7}{2}\right):2=-\frac{7}{4}\\y=\frac{21}{2}:3=\frac{7}{2}\end{cases}}\)
b) 21x = 19y => \(\frac{21x}{399}=\frac{19y}{399}\)=> \(\frac{x}{19}=\frac{y}{21}\)
Áp dụng t/c dãy tỉ số = nhau ta có :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
=> x = -38,y = -42
\(a,\frac{2x}{3y}=-\frac{1}{3}\)và \(2x+3y=7\)
Theo bài ra ta có
\(\frac{2x}{3y}=-\frac{1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có
\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)
\(\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}\Rightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\3y=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}}\)
\(b,21x=19y\)và \(x-y=4\)
Theo bài ra ta có
\(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}\)
Áp dụng dãy tỉ số bằng nhau ta có
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
\(\hept{\begin{cases}\frac{x}{19}=-2\\\frac{y}{21}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-38\\y=-42\end{cases}}}\)
Ta có : \(\frac{x}{5}=y=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}\)
Lại có : -x - y + 2z = 160
=> -(x + y - 2z) = 160
=> x + y - 2z = -160
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}=\frac{x+y-2z}{5+1-\left(-4\right)}=\frac{-160}{10}=-16\)
=> x = -16.5 = -80 , y = -16 , z = -16.(-2) = 32
Đặt \(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=8k\\z=5k\end{cases}}\)
=> 4x = 12k , 3y = 24k , 2z = 10k
=> 4x + 3y - 2z = 12k + 24k - 10k
=> 52 = 26k
=> k = 2
Với k = 2 thì x = 3.2 = 6 , y = 8.2 = 16 , z= 5.2 = 10
8x = 5y => \(\frac{x}{5}=\frac{y}{8}\)
=> \(\frac{2x}{10}=\frac{y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{y}{8}=\frac{y-2x}{8-10}=\frac{-10}{-2}=5\)
=> x = 5.5 = 25,y = 5.8 = 40
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
\(4x=3y=8z\Rightarrow\frac{4x}{24}=\frac{3y}{24}=\frac{8z}{24}\Leftrightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{3}=\frac{x+y-z}{6+8-3}=\frac{55}{11}=5\)
\(\Rightarrow\hept{\begin{cases}x=6.5=30\\y=8.5=40\\z=3.5=15\end{cases}}\)
\(\dfrac{x}{3}=\dfrac{y}{4}\)Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{21}{7}=3\Rightarrow x=9;y=12\)