Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐK x>0
\(log_{2017}x+log_{2016}x=0\Leftrightarrow\dfrac{lnx}{ln2017}+\dfrac{lnx}{ln2016}=0\)
\(\Leftrightarrow lnx\left(\dfrac{1}{ln2017}+\dfrac{1}{ln2016}\right)=0\Leftrightarrow lnx=0\Rightarrow x=1\)
b/ ĐK \(\left\{{}\begin{matrix}x-1>0\\x-1\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
\(x^3-5x^2+6x=0\Leftrightarrow x\left(x^2-5x+6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=2\left(l\right)\\x=3\end{matrix}\right.\) \(\Rightarrow x=3\)
a)ĐK: 2x+1>0
\(\log_3\left(2x+1\right)=2\log_{2x+1}3+1\)
\(\Leftrightarrow log_3\left(2x+1\right)=2.\frac{1}{log_3\left(2x+1\right)}+1\)
Nhân \(log_3\left(2x+1\right)\)cả 2 vế
Đặt \(t=log_3\left(2x+1\right)\)
\(\Leftrightarrow t^2-t-2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=9\\2x+1=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-\frac{1}{3}\end{array}\right.\)nhận cả 2 nghiệm
b)ĐK x>0
\(\Leftrightarrow1+log^2_{27}x=\frac{10}{3}log_{27}x\)
Đặt \(t=log_{27}x\)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\left[\begin{array}{nghiempt}x=27^3\\x=3\end{array}\right.\)
ĐK: -1<x\(\ne\)0
Đặt \(log_3\left(x+1\right)=t\) (t\(\ne\)0)
bpt trở thành \(\frac{1}{3^t}>\frac{1+t}{3^t-1}\)
\(\Leftrightarrow\frac{1+t}{3^t-1}-\frac{1}{3^t}< 0\Leftrightarrow\frac{t.3^t+1}{3^t\left(3^t-1\right)}< 0\)
vì \(3^t>0\forall t\) nên ta có thể nhân 2 vế của bpt với \(3^t\)
Khi đó, ta có bpt \(\Leftrightarrow\frac{t.3^t+1}{3^t-1}< 0\)
*) Đặt \(f\left(t\right)=t.3^t+1\), f(0)=1
dễ thấy f(t) đồng biến trên tập R
*) Xét 2 trường hợp:
+TRƯỜNG HỢP 1) với t<0 \(\Leftrightarrow3^t< 1\Leftrightarrow3^t-1< 0\) (1)
vì \(\lim\limits_{t\rightarrow-\infty}\left[f\left(t\right)\right]=1\) nên f(t)>1 với mọi t \(\Leftrightarrow t.3^t+1>1\Rightarrow t.3^t+1>0\forall t\) (2)
kết hợp (1) và (2) ta thấy t<0 thỏa mãn bpt
+TRƯỜNG HỢP 2) với t>0 \(\Leftrightarrow3^t-1>0\) (3)
lại có f(t)>f(0) với mọi t>0 \(\Leftrightarrow t.3^t+1>1\) (4)
kết hợp (3) và (4) ta thấy không thỏa mãn bpt
vậy bpt đã cho tương đương t<0\(\Leftrightarrow log_3\left(x+1\right)< 0\Leftrightarrow x+1< 1\Leftrightarrow x< 0\)
kết hợp ĐK ta có -1<x<0
8.
\(I=\int sinx.cos2xdx=\int\left(2cos^2x-1\right)sinxdx\)
\(=\int\left(1-2cos^2x\right)d\left(cosx\right)=cosx-\frac{2}{3}cos^3x+C\)
9.
\(I=\int\frac{sin2x}{1+cos^2x}dx=-\int\frac{2\left(-sinx\right).cosx}{1+cos^2x}dx=-\int\frac{d\left(cos^2x\right)}{1+cos^2x}\)
\(=-ln\left|1+cos^2x\right|+C\)
6.
\(I=\int cos^3xdx=\int\left(1-sin^2x\right)cosxdx\)
\(=\int\left(1-sin^2x\right)d\left(sinx\right)=sinx-\frac{1}{3}sin^3x+C\)
7.
\(I=\int sin^2x.cos^3xdx=\int sin^2x\left(1-sin^2x\right)cosxdx\)
\(=\int\left(sin^2x-sin^4x\right)d\left(sinx\right)=\frac{1}{3}sin^3x-\frac{1}{5}sin^5x+C\)
Đặt x=log9t (t>0), phương trình đã cho trở thành:
\(2^{3log_9t}+3^{2log_9t}=17\Leftrightarrow8^{log_9t}+t=17\)
Đặt \(f\left(t\right)=8^{log_9t}+t-17\)
ta thấy f(t) là hàm đồng biến trên khoảng \(\left(0;+\infty\right)\) mà f(9)=0
do đó t=9 là nghiệm duy nhất của phương trình f(t)=0
t=9 nên x=1
\(TXD:D=R\)
\(\Leftrightarrow\frac{4^x}{2}+\frac{4^x}{3}-\frac{4^x}{5}>\frac{2^7}{2^x}+\frac{2^5}{2^x}-\frac{2^3}{2^x}\)
\(\Leftrightarrow4^x.\frac{19}{30}>\frac{1}{2^x}.152\\ \Leftrightarrow8^x>240\Leftrightarrow x>\log_8240\)
Lời giải:
Ta có: \(4^x+2^x=4x+2\) \(\Leftrightarrow 4^x+2^x-4x-2=0\)
Đặt \(f(x)=4^x+2^x-4x-2\)
\(\Rightarrow f'(x)=\ln 4.4^x+\ln 2.2^x-4\)
\(f'(x)=\ln 4(2^x)^2+\ln 2.2^x-4=0\Leftrightarrow \) \(\left[{}\begin{matrix}2^x\approx-1.96\left(vl\right)\\2^x=1.47\end{matrix}\right.\)
\(\Leftrightarrow x\approx \log_2(1.47)\)
Lập bảng biến thiên:
Từ bảng biến thiên ta suy ra pt \(f(x)=0\) có nghiệm \(x=\left\{0;1\right\}\)
em cảm ơn ạ!