K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

mình đi

1 tháng 12 2021

Ta có 4x^2/x-3>0

    <=>x-3>0(vì 4x^2>0 với mọi x)

    <=>x>3

vậy x>3

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

12 tháng 9 2017

 a, x(x-1)(x+1)(x+2)=24 
[x(x+1)]*[(x-1)(x+2)]=24 
(x^2+x)*(x^2+x-2)=24 
đặt t=x^2+x;ta đc 
t*(t-2)=24 
t^2-2t=24 
t^2-2t+1=25 
(t-1)^2=5^2 
(t-1)^2-5^2=0 
((t-6)(t+4)=0 
t=6 hoặc t= -4 
với t=6 
thì x^2+x=6 <=> (x+1/2)^2 = 25/4 <=> (x+1/2)^2 = (5/2)^2 <=> (x+1/2)^2 - (5/2)^2 =0 
đến đây lại áp dụng HĐT thứ 3 giống như khi tìm t lúc nãy là ra 
với t= -4 em tự làm 
b, 2x(8x-1)^2 (4x-1)=9 <=> (8x-1)^2*(8x^2-2x)=9 
<=> (64x^2-16x+1)*(8x^2-2x)=9 
đặt t=(8x^2-2x) => 64x^2-16x =8t 
ta đc: (8t+1)*t=9 <=> 8t^2+t-9 = 0 <=> (t-1)(8t+9)=0 
c, (21/x^2-4x+10)- x^2+4x-6=0 <=> 21/x^2 - x^2 +4 =0 
đảt t=x^2 (t#0) 
ta đc: 21/t - t + 4 = 0 
quy đồng đc: 21-t^2+4t = 0 (với t # 0) 
<=> -(t-2)^2 + 25 =0 <=> 5^2 - (t-2)^2 = 0 
d, 2x^4-9x^3+14x^2-9x+2=0 
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1 
nên phân tích đc nhân tử là (x-1) 
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0 
<=> x=1 và 2x^3-7x^2+7x-2=0 
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1) 
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0 
<=> x=1 và 2x^2-5x+2=0 
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0 
<=> (x-5/4)^2 - 9/16 = 0 
<=> (x-5/4)^2 - (3/4)^2 = 0

P/s: Thay bằng a,b,c, cho dễ hiểu nha. Tham khảo nhé   ♥ ♥ ♥

15 tháng 9 2017

.camon❤

13 tháng 6 2018

1. 4x2 + 4x + 2 = (4x2 + 4x + 1) + 1 = (2x + 1)2 + 1

Có: (2x+1)2 ≥ 0 ∀x => (2x+1)2 + 1 ≥ 1 > 0 (đpcm)

3. -x2 + 4x - 5 = -(x2 - 4x + 4) - 1 = -(x - 2)^2 - 1

Có: -(x-2)^2 ≤ 0 => -(x-2)^2 -1 ≤ - 1 < 0 (đpcm)

7. (x+2)(x-5) + 15 = x2 - 3x + 5 = (x2 - 2.x.\(\dfrac{3}{2}\)+ \(\dfrac{9}{4}\)) + \(\dfrac{11}{4}\)

= ( x - \(\dfrac{3}{2}\))^2 + \(\dfrac{11}{4}\) \(\ge\dfrac{11}{4}>0\left(đpcm\right)\)

28 tháng 5 2017

 ban nao giup minh vs mjnh vs

28 tháng 5 2017

1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)

2. 5(2x - 1)2 - 3(2x - 1) = 0

<=> (2x - 1).[5(2x - 1) - 3] = 0

<=> (2x - 1).(10x - 8) = 0

<=> (2x - 1) = 0 hoặc (10x - 8) = 0

<=> x = 1/2 hoặc x = 4/5

3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3

Do: (x - 2)2 > hoặc = 0 (với mọi x)

Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)

Hay (x - 2)2 + 3 > 0 (với mọi x)  => đpcm

29 tháng 8 2017

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

3 tháng 9 2018

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

14 tháng 6 2018

2. \(-x^2+2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\)

vì: \(-\left(x+1\right)^2\forall x\le0\Rightarrow-\left(x+1\right)^2-1\le-1< 0\left(đpcm\right)\)

6.

\(\left(x-2\right)\left(x-4\right)+3=x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\)

vì: \(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+2\ge2>0\left(đpcm\right)\)

27 tháng 8 2020

Bài 1.

a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18

<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18

<=> -52x + 9 = 18

<=> -52x = 9

<=> x = -9/52 

b) ( x - 7 )2 - 9( x + 4 )2 = 0

<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0

<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0

<=> -8x2 - 86x - 95 = 0 

<=> -8x2 - 10x - 76x - 95 = 0

<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0

<=> ( x + 5/4 )( -8x - 76 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)

c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36

<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36

<=> 8x2 + 23x - 4 - 36 = 0

<=> 8x2 + 23x - 40 = 0

=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))

Bài 2.

a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

5 tháng 8 2017

a, x2 - 2x + 3 > 0

Xét : VT = x2 - 2x + 1 + 2 = ( x - 1 )2 + 2 .

Có : ( x - 1 )2 \(\ge\) 0 với mọi x \(\Rightarrow\) ( x - 1 )2 + 2 > 0 với mọi x hay

VT > 0 .

Vậy BĐT x2 - 2x + 3 > 0 đúng .

Các câu còn lại tương tự .

Chúc bn học tốt !!!!!!!!hihi