
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a,x^2-10x-39=0\)
\(\Leftrightarrow x^2-10x-39+64=64\)
\(\Leftrightarrow x^2-10x+25=64\)
\(\Leftrightarrow\left(x-5\right)^2=64\)
làm nốt
\(x^2-10x-39=0\Leftrightarrow x^2-13x+3x-39=0\Leftrightarrow x\left(x-13\right)+3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=13\\x=-3\end{cases}}\)

\(a,x\left(8x-2\right)-8x^2+12=0\)
\(\Rightarrow8x^2-2x-8x^2+12=0\)
\(\Rightarrow-2x+12=0\)
\(\Rightarrow-2x=-12\)
\(\Rightarrow x=6\)
\(b,x\left(4x-5\right)-\left(2x+1\right)^2=0\)
\(\Rightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Rightarrow-9x-1=0\)
\(\Rightarrow-9x=1\)
\(\Rightarrow x=\frac{-1}{9}\)
a) x(8 - 2) - 8x2 + 12 = 0
x(8 - 2) - 8x2 = 12 - 0
x(8 - 2) - 8x2 = 12
2x = 12
x = 6
b) x(4x - 5) - (2x + 1)2 = 0
9x - 1 = 0
9x = 0 + 1
9x = 1
x = -1/9

1) \(x^3-x^2=4x^2-8x+4\)
\(\Leftrightarrow x^3-x^2-4x^2+8x-4=0\)
\(\Leftrightarrow x^2-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x.2+2^2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

a. \(x^2-x-6=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
b. \(x^2+8x-20=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(10x-20\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+10\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
c. \(x^4+4x^2-5=0\)
\(\Leftrightarrow\left(x^4+4x^2+4\right)-9=0\)
\(\Leftrightarrow\left(x^2+2\right)^2-3^2=0\)
\(\Leftrightarrow\left(x^2+2+3\right)\left(x^2+2-3\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-5\left(vo.nghiem\right)\\x=1\\x=-1\end{matrix}\right.\)
d. \(x^3-19x-30=0\)
\(\Leftrightarrow\left(x^3-5x^2\right)+\left(5x^2-25x\right)+\left(6x-30\right)=0\)
\(\Leftrightarrow x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\\x=-3\end{matrix}\right.\)

a)\(x^2-2x-24=0\Leftrightarrow x^2-2x+1-25=0\)
\(\Leftrightarrow\left(x-1\right)^2-5^2=0\Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\Leftrightarrow\hept{\begin{cases}x=6\\x=-4\end{cases}}\)
b)\(x^2+8x+12=0\Leftrightarrow x^2+8x+16-4=0\)
\(\Leftrightarrow\left(x+4\right)^2-2^2=0\Leftrightarrow\left(x+4-2\right)\left(x+4+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=0\Leftrightarrow\hept{\begin{cases}x=-2\\x=-6\end{cases}}\)
c)\(4x^2+4x-63=0\Leftrightarrow4x^2+4x+1-64=0\)
\(\Leftrightarrow\left(2x+1\right)^2-8^2=0\Leftrightarrow\left(2x+1-8\right)\left(2x+1+8=0\right)\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+9\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{9}{2}\end{cases}}\)

8x2 - 4x = 0
=> 4x ( 2x - 1 ) = 0
<=>\(\orbr{\begin{cases}4x=0\\2x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
KL. Tập Ngiệm của pt ............
tự làm nốt
8x2-4x=0
=>4x.2x-4x=0
=>4x.(2x-1)=0
=>4x=0 hoặc 2x-1 =0
x =0:4 2x =0+1
x =0 2x =1
x =1:2=0,5
Vậy x\(\in\){0;0,5}
b)-6x+9x2=0
-3x.2+3x.3x.3=0
=>3x.(-2+1.3x+3)=0
=>3x=0 hoặc -2+1.3x+3=0
x =0:3 3x+3 =0+2
x =0 3x+3 =2
3x =2-3
3x =-1
x =\(\frac{-1}{3}\)
Vậy x\(\in\){0;\(\frac{-1}{3}\)}
4x2=3x
=>4x2-3x=0
=>x.(4x-3)=0
=>x=0 hoặc 4x-3=0
x=0 4x =0+3
4x =3
x =\(\frac{3}{4}\)
Vậy x\(\in\){0;\(\frac{3}{4}\)}
Các phần khác bạn làm tương tự nha
Chúc bn học tốt

1) \(9x^2+y^2-10y-12x+29=0\)
\(\Leftrightarrow\left(9x^2-12x+4\right)+\left(y^2-10y+25\right)=0\)
\(\Leftrightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\)
ta có : \(\left(3x-2\right)^2\ge0\forall x\) và \(\left(y-5\right)^2\ge0\forall y\)
\(\Rightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=5\end{matrix}\right.\)
vậy \(x=\dfrac{2}{3};y=5\)
2) câu này đề sai rồi nha
3) \(x^2+29+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)+9=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9=0\)
ta có : \(\left(x+4\right)^2\ge0\forall x\) và \(\left(3y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9\ge9>0\forall x;y\)
vậy phương trình vô nghiệm
\(4x^2+8x-5=0\)
\(\Leftrightarrow\left(2x+5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=-5\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{1}{2}\end{cases}}\)
cảm ơn nhi nhé!