K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

\(4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy...

19 tháng 6 2021

\(4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

<=> 2x + 1 = 0

<=> x = -1/2

1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)

\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)

\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)

\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)

\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)

Vậy: S={0;-7;8;-1}

2) Ta có: \(x^3-8x^2+17x-10=0\)

\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)

\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)

Vậy: S={2;1;5}

3) Ta có: \(2x^3-5x^2-x+6=0\)

\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)

\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)

Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)

4) Ta có: \(4x^4-4x^2-3=0\)

\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)

\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)

\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)

\(2x^2+1>0\forall x\in R\)

nên \(2x^2-3=0\)

\(\Leftrightarrow2x^2=3\)

\(\Leftrightarrow x^2=\frac{3}{2}\)

hay \(x=\pm\sqrt{\frac{3}{2}}\)

Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)

11 tháng 10 2020

a) \(\left(2x-1\right)^2-25=0\)

\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{-2;3\right\}\)

b) \(\left(x+8\right)^2=121\)

\(\Leftrightarrow\left(x+8\right)^2-121=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+19\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-19\end{matrix}\right.\)

Vậy \(x\in\left\{-19;3\right\}\)

c) \(x^3-4x^2+4x=0\)

\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(x\in\left\{0;2\right\}\)

d) \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

11 tháng 10 2020

tìm x, biết

a) (2x-1)2 -25 =0

(2x-1)2 =25

(2x-1)2 =52

(2x-1) =5

2x =6

x =3

b) (x+8)2 =121

(x+8)2 =112

(x+8) =11

x =3

5 tháng 12 2017

1)⇔x2+1x-3x+3=0

⇔x(x+1)-3(x+1)=0

⇔(x+1)(x-3)=0

⇔x+1=0 hoặc x-3=0

⇔x=-1 hoặc x=3

5 tháng 12 2017

4)⇔x(1+5x)=0

⇔x=0 hoặc 1+5x=0

⇔x=0 hoặc 5x=-1

⇔x=0 hoặc x=-0.2

6 tháng 9 2020

Tìm x biết:

4x2 - 6x = 0

\(\Leftrightarrow2x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\2x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x=\left\{0;\frac{3}{2}\right\}\)

b) 4x2 + 4x = -1

\(\Leftrightarrow4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

Vậy \(x=-\frac{1}{2}\)

c) 5x2 + x = 0

\(\Leftrightarrow x\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\5x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{1}{5}\end{matrix}\right.\)

Vậy \(x=\left\{0;-\frac{1}{5}\right\}\)

d) x3 - 5x = 4x2

\(\Leftrightarrow x^3-4x^2-5x=0\)

\(\Leftrightarrow x^3+x^2-5x^2-5x=0\)

\(\Leftrightarrow x^2\left(x+1\right)-5x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-5x\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=5\end{matrix}\right.\)

Vậy x ={0; - 1; 5}

3x(x-2) = x-2

\(\Leftrightarrow3x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy \(x=\left\{2;\frac{1}{3}\right\}\)

x3 - 16x = 0

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy x = {0; 4; -4}

5 tháng 3 2019

\(j,3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy...............................

5 tháng 3 2019

\(m,3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-2\end{matrix}\right.\)

6 tháng 9 2018

\(a,\left(x-2\right)^2=4x^2+4x+1\)

\(\Rightarrow\left(x-2\right)^2=\left(2x\right)^2+2.x.2+1^2\)

\(\Rightarrow\left(x-2\right)^2=\left(2x+1\right)^2\)

\(\Rightarrow\left(x-2\right)^2-\left(2x+1\right)^2=0\)

\(\Rightarrow\left(x-2-2x-1\right)\left(x-2+2x+1\right)=0\)

\(\Rightarrow\left(-x-3\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-x-3=0\\3x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-x=3\\3x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{-3;\dfrac{1}{3}\right\}\)

\(b,4x^3-4x^2+9-9x=0\)

\(\Rightarrow4x^2\left(x-1\right)+9\left(1-x\right)=0\)

\(\Rightarrow4x^2\left(x-1\right)+9\left(x-1\right)=0\)

\(\left(4x^2+9\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}4x^2+9=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x^2=-9\\x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{-\dfrac{3}{2}}\\x=1\end{matrix}\right.\)

Vậy \(x\in\left\{\sqrt{-\dfrac{3}{2}};-\sqrt{-\dfrac{3}{2}};1\right\}\)

28 tháng 10 2017

a) \(x^2-2x-7=0\)

\(\Rightarrow x^2-2.x.1+1^2-8=0\)

\(\Rightarrow\left(x-1\right)^2-8=0\)

\(\Rightarrow\left(x-1\right)^2-\sqrt{8}^2=0\)

\(\Rightarrow\left(x-1+\sqrt{8}\right)\left(x-1-\sqrt{8}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1+2\sqrt{2}\\x=-1-2\sqrt{2}\end{matrix}\right.\)

b) \(4x^2+4x-3=0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{3}{2}\right)=0\) (tách hạng tử )

Rồi dùng máy tính nhấn. Mấy câu kia tương tự nhé!

28 tháng 10 2017

3x2 - 2x - 1 = 0

=>3x2+x-3x-1=0

=>x(3x+1)-1(3x+1)=0

=>(x-1)(3x+1)=0

=> \(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=1\\3x=-1\Rightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

vậy x=1 hoặc x=-\(\dfrac{1}{3}\)