K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

A = 9x2 + 6x + 15

A = [(3x + 6x + 1] + 14

A = (3x + 1)2 + 14 \(\ge\)14

Dấu = xảy ra \(\Leftrightarrow\)3x + 1 = 0

                        \(\Rightarrow\)3x = - 1

                       \(\Rightarrow\)x = - 1 / 3

Min A = 14 \(\Leftrightarrow\)x = - 1 / 3

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

6 tháng 5 2020

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

1 tháng 5 2018

Bài 1 :

a) \(a\ne x\)

b) Tại a= 2 PT

\(\Leftrightarrow\left(5.2-8\right)x=2014\)

\(\Leftrightarrow2x=2014\)

\(\Leftrightarrow x=1007\) 

Vậy tập nghiệm của phương trình đã cho khi a=2 là \(S=\left(1007\right)\)

Bài 2 

Ta có :\(f\left(x\right)=2x^2-12x+14\)

                   \(=2\left(x^2-6x+9\right)-4\)

                \(=2\left(x-3\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy GTNN của \(f\left(x\right)\)là \(-4\)khi \(x=3\)

Nhớ K cho tớ nhé

8 tháng 7 2017

Ta có : A = x(x + 1)(x + 2)(x + 3)

=> A = [x(x + 3)].[(x + 1)(x + 2)]

=> A = (x2 + 3x) . (x2 + 3x + 2)

Đặt a = x2 + 3x + 1 

Khi đó A = (a - 1)(a + 1)

=> A = a2 - 1

=> A = x2 + 3x + 1 - 1

=> A = x2 + 3x

=> A = x2 + 3x + \(\frac{4}{9}-\frac{4}{9}\) 

\(\Rightarrow A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\)

Mà \(\left(x+\frac{2}{3}\right)^2\ge0\forall x\)

Nên : \(A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\forall x\)

Vậy Amin = \(\frac{-4}{9}\) , dầu "=" xảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

25 tháng 6 2017

a) \(A=x^2-6x+15\)

\(A=x^2+6x+9+6\)

\(A=\left(x+3\right)^2+6\ge6\)

vậy Min A=6\(\Leftrightarrow\)x=-3

b) Min B=4x

c) \(C=2x^2-6x+4\)

d) \(D=x^2+x+1\)

\(=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

vậy Min D\(=\frac{3}{4}\Leftrightarrow x=-\frac{1}{2}\)

25 tháng 6 2017

Ta có : A = x2 - 6x + 15

=> A = x2 - 2.x.3 + 9 + 6

=> A = x2 - 2.x.3 + 32 + 6

=> A = (x - 3)2 + 6 

Mà : (x - 3)\(\ge0\forall x\in R\)

Nên : (x - 3)2 + 6 \(\ge6\forall x\in R\)

Vậy GTNN của A là 6 khi x = 3