K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: \(-x^3-12x^2-48x-64\)

\(=-\left(x+4\right)^3\)

\(=-\left(-6+4\right)^3=-\left(-2\right)^3=-\left(-8\right)=8\)

b: \(=8x^3-y^3-8x^3+27y^3=26y^3=26\cdot\left(-3\right)^3=-702\)

c: \(=-\left(4x^4-12x^2y+9y^2\right)\)

\(=-\left(2x^2-3y\right)^2\)

\(=-\left(2x^2-2x-11\right)^2\)

 

29 tháng 10 2017

a)  2x + 3y

b)  2x + 1

c)  9x2 + 3x +1

d)  x - 3

Ở mỗi phần bạn phân tích đa thức bị chia thành nhân tử xuất hiện nhân tử chung là đa thức chia. Ta có đc kq như trên nha

4 tháng 3 2015

ta có 4x2 + 9y2 = (2x)2 +2 .2x.3y +(3y)2 -12xy

                       = (2x+3y)2 -12xy

thay 2x + 3y = 8 và xy = 2 có

82 -12. 2= 64-24 = 40

23 tháng 7 2017

giải

A=(3x-5)(2x+11)-(2x+3)(3x+7)

=6x^2+33x-10x-55-(6x^2+14x+9x+21)

=6x^2+33x-10x-55-6x^2-14x-9x-21

= -76

vậy biểu thức không phụ thuộc vào biến x,y

23 tháng 7 2017

B=(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29

vậy biểu thức không phụ thuộc vào biến x

31 tháng 8 2020

a. \(2a^2+5ab-3b^2-7b-2\)

\(=\left(2a^2+6ab+2a\right)-\left(ab+3b^2+b\right)-\left(2a+6b+2\right)\)

\(=2a\left(a+3b+1\right)-b\left(a+3b+1\right)-2\left(a+3b+1\right)\)

\(=\left(2a-b-2\right)\left(a+3b+1\right)\)

b. \(2x^2-7xy+x+3y^2-3y\)

\(=\left(2x^2-xy\right)-\left(6xy-3y^2\right)+\left(x-3y\right)\)

\(=x\left(2x-y\right)-3y\left(2x-y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y+1\right)\)

c. \(6x^2-xy-2y^2+3x-2y\)

\(=\left(6x^2+3xy\right)-\left(4xy-2y^2\right)+\left(3x-2y\right)\)

\(=3x\left(2x+y\right)-2y\left(2x+y\right)+\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(2x+y\right)+\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(2x+y+1\right)\)

NV
21 tháng 8 2020

\(2x-3y=-1\Rightarrow\left(2x-3y\right)^2=1\)

\(\Rightarrow4x^2-12xy+9y^2=1\)

\(\Rightarrow4x^2+9y^2=1+12xy\)

\(\Rightarrow4x^2+9y^2=1+12.3=37\)

\(B=\left(2x+3y\right)^2=4x^2+9y^2+12xy=37+12.3=73\)