Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x4-4x3+12x-9 = x3(x-1) -3x2(x-1) -3x(x-1) +9(x-1)
=(x-1)(x3-3x2-3x+9)
=(x-1)[x2(x-3)-3(x-3)]
=(x-1)(x-3)(x2-3)
b)(x+2)2=9(x2-4x+4) <--> x2+4x+4=9x2-36x+36
<-->8x2 -40x+32=0
<-->8(x2-5x+4)=0
<-->x2-5x+4=0
<--->(x-4)(x-1)=0
* Nếu x-4=0 <--> x=4
* Nếu x-1=0<--> x=1
Vậy S={4;1}
\(\left(4x^2-25\right)^2-9\left(4x^2-9\right)^2\)
\(=\left(4x^2-25\right)^2-\left(12x^2-27\right)^2\)
\(=\left(4x^2-25+12x^2-27\right)\left(4x^2-25-12x^2+27\right)\)
\(=\left(16x^2-52\right)\left(2-8x^2\right)\)
\(=8\left(4x^2-13\right)\left(1-4x^2\right)\)
\(=8\left(4x^2-13\right)\left(1+2x\right)\left(1-2x\right)\)
a. \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)
b. \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)
c. \(4x^2+12x+9=\left(2x\right)^2+2\cdot2x\cdot3+3^2=\left(2x+3\right)^2\)
d. \(9x^2+30x+25=\left(3x\right)^2+2\cdot3x\cdot5+5^2=\left(3x+5\right)^2\)
e. \(4x^2-20x+25=\left(2x\right)^2-2\cdot2x\cdot5+5^2=\left(2x+5\right)^2\)
câu a sai đề đúng ko, mik sửa lại nhé
a. (4x2 - 9):(2x - 3)
= (2x + 3)(2x - 3): (2x - 3)
= 2x + 3
b. (8x3 - 27):(4x2 + 6x + 9)
= (2x - 3)(4x2 + 6x + 9):(4x2 + 6x + 9)
= 2x - 3
\(a,\left(x-2\right)^2=4x^2+4x+1\)
\(\Rightarrow\left(x-2\right)^2=\left(2x\right)^2+2.x.2+1^2\)
\(\Rightarrow\left(x-2\right)^2=\left(2x+1\right)^2\)
\(\Rightarrow\left(x-2\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow\left(x-2-2x-1\right)\left(x-2+2x+1\right)=0\)
\(\Rightarrow\left(-x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-x-3=0\\3x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-x=3\\3x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-3;\dfrac{1}{3}\right\}\)
\(b,4x^3-4x^2+9-9x=0\)
\(\Rightarrow4x^2\left(x-1\right)+9\left(1-x\right)=0\)
\(\Rightarrow4x^2\left(x-1\right)+9\left(x-1\right)=0\)
\(\left(4x^2+9\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x^2+9=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x^2=-9\\x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{-\dfrac{3}{2}}\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{-\dfrac{3}{2}};-\sqrt{-\dfrac{3}{2}};1\right\}\)
a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)
\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)
\(=x^3+14x^2+27x+51\)
b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)
\(=8x^3+18-8x^3+18=36\)
c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)
\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)
\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)
\(=64x^5-1\)
d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)
\(=x^3-x^2+14\)
Chúc bạn học tốt!!!
a) Ta có: \(4x^2+4x+1\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1\)
\(=\left(2x+1\right)^2\)
b) Sửa đề: \(x^2-6x+9-9y^2\)
Ta có: \(x^2-6x+9-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
c) Ta có: \(12x-9-4x^2\)
\(=-\left(4x^2-12x+9\right)\)
\(=-\left[\left(2x\right)^2-2\cdot2x\cdot3+3^2\right]\)
\(=-\left(2x-3\right)^2\)
d) Ta có: \(1-9x+27x^2-27x^3\)
\(=1^3-3\cdot1^2\cdot3x+3\cdot1\cdot\left(3x\right)^2-\left(3x\right)^3\)
\(=\left(1-3x\right)^3\)
Làm 2 câu các câu còn lại tương tự!
a, \(E=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2x-2x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\)
Hay \(E\le-1\) với mọi giá trị của \(x\in R\).
Để \(E=-1\) thì \(-\left[\left(x-2\right)^2+1\right]=-1\)
\(\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy.............
b, \(F=-2x^2+2x-1=-\left(2x^2-2x+1\right)\)
\(=-\left(2x^2-x-x+\dfrac{1}{2}-\dfrac{3}{2}\right)\)
\(=-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x-1\right)^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\Rightarrow-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]\le\dfrac{3}{2}\)
Hay \(F\le\dfrac{3}{2}\) với mọi giá trị của \(x\in R\).
Để \(F=\dfrac{3}{2}\) thì \(-\left[\left(2x-1\right)^2-\dfrac{3}{2}\right]=\dfrac{3}{2}\)
\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Vậy.............
7, \(G=-4x^2+12x-7\)
\(=-4\left(x^2-3x+\dfrac{7}{4}\right)\)
\(=-4\left(x^2-\dfrac{3}{2}.x.2+\dfrac{9}{4}-\dfrac{2}{4}\right)\)
\(=-4\left(x-\dfrac{3}{2}\right)^2+2\le2\)
Dấu " = " khi \(-4\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(MAX_G=2\) khi \(x=\dfrac{3}{2}\)
8, \(H=-2x^2+4x-15\)
\(=-2\left(x^2-2x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-2x+1+\dfrac{13}{2}\right)\)
\(=-2\left(x-1\right)^2-13\le-13\)
Dấu " = " khi \(-2\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(MAX_H=-13\) khi x = 1
9, \(K=-x^4+2x^2-2\)
\(=-\left(x^2-2x^2+1+1\right)\)
\(=-\left(x^2-1\right)^2-1\le-1\)
Dấu " = " khi \(-\left(x^2-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(MAX_K=-1\) khi \(x=\pm1\)
10, \(J=-3x^2+15x-9\)
\(=-3\left(x^2-\dfrac{5}{2}.x.2+\dfrac{10}{4}+\dfrac{2}{4}\right)\)
\(=-3\left(x-\dfrac{5}{2}\right)^2-\dfrac{3}{2}\le\dfrac{-3}{2}\)
Dấu " = " khi \(-3\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(MAX_J=\dfrac{-3}{2}\) khi \(x=\dfrac{5}{2}\)
Đề yc gì em?