\(4x^2-8x-5=0\)

Giải pt

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2022

4x^2 + 8x - 5 = 0
<=> 4x^2 + 8x + 4 - 9 = 0
<=> (4x^2 + 8x + 4) -9 = 0
<=> (2x + 2)^2 - 9 = 0
<=> (2x + 2 - 3)(2x + 2 + 3) = 0
<=> (2x - 1)(2x + 5) = 0
<=> 2x - 1 = 0 hoặc 2x  +5 = 0
<=> x = 1/2 hoặc x = -5/2

10 tháng 2 2022

\(4x^2-8x-5=0\\ \Leftrightarrow\left(4x^2+2x\right)-\left(10x+5\right)=0\\ 2x.\left(2x+1\right)-5.\left(2x+1\right)=0\\ \Leftrightarrow\left(2x-5\right).\left(2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow S=\left\{-\dfrac{1}{2};\dfrac{5}{2}\right\}\)

15 tháng 1 2019

\(a,x^2-10x-39=0\)

\(\Leftrightarrow x^2-10x-39+64=64\)

\(\Leftrightarrow x^2-10x+25=64\)

\(\Leftrightarrow\left(x-5\right)^2=64\)

làm nốt

15 tháng 1 2019

\(x^2-10x-39=0\Leftrightarrow x^2-13x+3x-39=0\Leftrightarrow x\left(x-13\right)+3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=13\\x=-3\end{cases}}\)

23 tháng 4 2019

a. \(x^2-x-6=0\)

\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

b. \(x^2+8x-20=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(10x-20\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+10\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)

c. \(x^4+4x^2-5=0\)

\(\Leftrightarrow\left(x^4+4x^2+4\right)-9=0\)

\(\Leftrightarrow\left(x^2+2\right)^2-3^2=0\)

\(\Leftrightarrow\left(x^2+2+3\right)\left(x^2+2-3\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-5\left(vo.nghiem\right)\\x=1\\x=-1\end{matrix}\right.\)

d. \(x^3-19x-30=0\)

\(\Leftrightarrow\left(x^3-5x^2\right)+\left(5x^2-25x\right)+\left(6x-30\right)=0\)

\(\Leftrightarrow x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]=0\)

\(\Leftrightarrow\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\\x=-3\end{matrix}\right.\)

27 tháng 2 2018

\(\left(x^3-x^2\right)-4x^2+8x-4=0\)

\(\Leftrightarrow x^3-x^2-4x^2+8x-4=0\)

\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)

\(\Leftrightarrow\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy......

27 tháng 2 2018

\(\left(x^3-x^2\right)-ã^2+8x-4=0\)

\(< =>x^3-x^2-4x^2+8x-4\)

\(< =>x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(< =>\left(x-1\right)\left(x^2-4x+4=0\right)\)

\(< =>\left(x-1\right)\left(x-2\right)^2=0< =>\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

9 tháng 5 2020

a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

ĐKXĐ: x≠1/4, x≠-1/4

\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)

⇒-12x-3=8x-2-3-6x

⇔8x-6x+12x=-3+2+3

⇔14x=2

⇔x=1/7(tmđk)

Vậy phương trình có nghiệm là x=1/7

b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)

ĐKXĐ: x≠0, x≠2

(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)

⇒10-2x+7x-14=4x-4+x

⇔-2x+7x-4x-x=-4-10+14

⇔0x=0

⇔ x∈R

Vậy phương trình có nghiệm là x∈R và x≠0, x≠2

c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)

ĐKXĐ: x≠0

(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3

⇔x4+x-x4+x=3

⇔2x=3

⇔x=3/2(tmđk)

Vậy phương trình có nghiệm là x=3/2

14 tháng 7 2018

b) Ta có pt \(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

<=>  \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\Leftrightarrow\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|=1\)

Mà \(\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|\ge\left|3-\sqrt{x-1}+\sqrt{x-1}-2\right|=1\)

...

14 tháng 7 2018

a) Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right)\)

Ta có pt \(\Leftrightarrow2a^2-3a-2=0\Leftrightarrow\left(a-2\right)\left(2a+1\right)=0\)

...

ĐKXĐ: \(x\ne2;x\ne1\)

Ta có: \(\frac{4x}{x-2}-\frac{1}{x-1}=\frac{8x^2-7}{3x-6}\)

\(\Leftrightarrow\frac{4x}{x-2}-\frac{1}{x-1}-\frac{8x^2-7}{3x-6}=0\)

\(\Leftrightarrow\frac{4x\left(x-1\right)\cdot3}{\left(x-2\right)\left(x-1\right)\cdot3}-\frac{1\left(x-2\right)\cdot3}{\left(x-1\right)\left(x-2\right)\cdot3}-\frac{\left(8x^2-7\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)}=0\)

\(\Leftrightarrow12x\left(x-1\right)-3\left(x-2\right)-\left(8x^2-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow12x^2-12x-\left(3x-6\right)-\left(8x^3-8x^2-7x+7\right)=0\)

\(\Leftrightarrow12x^2-12x-3x+6-8x^3+8x^2+7x-7=0\)

\(\Leftrightarrow-8x^3+20x^2-8x-1=0\)

20 tháng 2 2020

x=??

19 tháng 2 2020

\(\frac{12x\left(x-1\right)-3x+6}{3\left(x-2\right)\left(x-1\right)}=\frac{\left(8x^2-7\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)}\)

tiếp theo nhân vào và khử mẫu nha bạn!

20 tháng 2 2020

mong mn giải ra kq lun xem

12 tháng 4 2019

\(4x+5=0\)

\(\Leftrightarrow4x=-5\)

\(\Leftrightarrow x=\frac{-5}{4}\)

Vậy....

12 tháng 4 2019

\(6x+7=0\)

\(\Leftrightarrow6x=-7\)

\(\Leftrightarrow x=\frac{-7}{6}\)

Vậy....

14 tháng 2 2018

a ) \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)=42\)

Đặt \(x^2+x=t\), ta được :

\(t\left(t+1\right)=42\)

\(\Leftrightarrow t^2+t-42=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=6\\t=-7\end{matrix}\right.\)

Khi t = 6, ta được :

\(x^2+x-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Khi t = -7, ta được :

\(x^2+x+7=0\)

\(\Leftrightarrow\left[x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{27}{4}=0\) ( Vô lí )

Vậy ...