K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

\(4x^2+8x+4-4y^2\)

\(=\left(4x^2+8x+4\right)-4y^2\)

\(=\left(2x+2\right)^2-\left(2y\right)^2\)

\(=\left(2x+2-2y\right)\left(2x+2+2y\right)\)

\(=2\cdot\left(x-y+1\right)\cdot2\cdot\left(x+y+1\right)\)

\(=4\left(x-y+1\right)\left(x+y+1\right)\)

2 tháng 7 2017

a, Đề sai bạn ơi phải là cộng 16 chứ không phải cộng 4

b,B= (x-2y+1)^2

2 tháng 7 2017

thế còn c với d

15 tháng 9 2018

Bài 1 có phải là khai triển phép tính đúng ko

Bài 2 là rút gọn đúng ko

Bài 3 là tìm x đúng ko

1) a) (x-2)(x+3)=x2+3x-2x-6=x2+x-6 

    b) 4x2-(2x-1)2=(2x)2-(2x-1)2=(2x-2x+1)(2x+2x-1)=4x-1

2) a) 4x2-8x+4=4(x2-2x+1)=4(x-1)2

    b) x2+4x-4y2+4=(x2+4x+4)-4y2=(x+2)2-(2y)2=(x+2+2y)(x+2-2y)

Mình sửa bài 3a nha

5x(x-3)-x-3 =>5x(x-3)-x+3

3) a) 5x(x-3)-x+3=5x(x-3)-(x-3)=(x-3)(5x-1)=0

=>\(\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)

    b) 5x2-8x-4=(5x2-10x)+(2x-4)=5x(x-2)+2(x-2)=(x-2)(5x+2)=0

=>\(\orbr{\begin{cases}x+2=0\\5x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{2}{5}\end{cases}}}\)

Chúc bạn học tốt ! 

16 tháng 9 2018

\(a,A=-x^2-6x-10=-\left(x^2+6x+9\right)-1=-\left(x+3\right)^2-1\le-1\)

Dấu = xảy ra ⇔ x +3 =0 ⇔ x = -3

\(Max_A=-1\text{ ⇔}x=-3\)

\(b,B=12x-4x^2+3=-\left(4x^2-12x+9\right)+12=-\left(2x-3\right)^2+12\le12\)

Dấu = xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

\(Max_B=12\text{ ⇔}x=\dfrac{3}{2}\)

\(c,8x-8x^2+3=-8\left(x^2-x+\dfrac{1}{4}\right)+5=-8\left(x-\dfrac{1}{2}\right)^2+5\le5\)

\(d,-x^2-8x+2018-y^2+4y\)

\(=-\left(x^2+8x+16\right)-\left(y^2-4y+4\right)+2038\le2038\)

\(e,-4x^4-12x^2+11=-\left(4x^4+12x^2+9\right)+20=-\left(2x^2+3\right)^2+20\le20\)

\(f,C=x-\dfrac{x^2}{4}\Rightarrow4C=4x-x^2\)\(=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)

\(\Rightarrow C=-\dfrac{\left(x-2\right)^2}{4}+1\le1\)

\(g,D=x-\dfrac{9x^2}{25}\Rightarrow25D=-\left(9x^2-25x\right)=-\left(9x^2-2.3x.\dfrac{25}{6}+\dfrac{625}{36}\right)+\dfrac{625}{36}=-\left(3x-\dfrac{25}{6}\right)^2+\dfrac{625}{36}\)

\(\Rightarrow D=\dfrac{-\left(3x-\dfrac{25}{6}\right)^2}{25}+\dfrac{25}{36}\le\dfrac{25}{36}\)

26 tháng 6 2015

X^2n - 4 X^n.Y^n-1 + 4Y^2(n-1)

(X ^ n)^2 - 2. X^n.2. Y^n-1 + (2Y ^n-1)^2

= ( X ^N - 2Y^n-1  ) ^2  

6 tháng 7 2017

Ta có : C = 4x2 + 4y2 - 8x + 4y + 427

=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422

=> C = (2x - 2)2 + (2y + 1)2 + 422

Mà \(\left(2x-2\right)^2\ge0\forall x\)

       \(\left(2y+1\right)^2\ge0\forall x\)

Nên C = (2x - 2)2 + (2y + 1)2 + 422  \(\ge422\forall x\)

Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)

Vậy C luôn luôn dương (đpcm)

29 tháng 6 2019

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

29 tháng 6 2019

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1

9 tháng 7 2019

Bài 1:tìm x ,biết:

a) (2x - 1)(3x + 2) - 6x(x + 1) = 0

\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)

\(\Leftrightarrow-5x=2\)

\(\Leftrightarrow x=\frac{-2}{5}\)

b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)

\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)

\(\Leftrightarrow-10x=-4\)

\(\Leftrightarrow x=\frac{2}{5}\)

c) \(4x^2-1=2\left(2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)

2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)

\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)

b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)

\(=1.\left(2x-1\right)\)

c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)

\(=\left(x-4-2y\right)\left(x-4+2y\right)\)

d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)

\(=\left(3x-2-y\right)\left(3x-2+y\right)\)

e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)

\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)

\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)

a: \(=3x^2-3y^2=3\left(x-y\right)\left(x+y\right)\)

b: \(=\left(4x^2-7x-50\right)^2-\left(16x^4+56x^3+49x^2\right)\)

\(=\left(4x^2-7x-50\right)^2-\left(4x^2+7x\right)^2\)

\(=\left(4x^2-7x-50-4x^2-7x\right)\left(4x^2-7x-50+4x^2+7x\right)\)

\(=\left(-14x-50\right)\left(8x^2-50\right)\)

\(=-4\left(7x+25\right)\left(2x-5\right)\left(2x+5\right)\)

d: \(=\left(x^2+y^2\right)^3-8x^3y^3\)

\(=\left(x^2+y^2-2xy\right)\left[x^4+2x^2y^2+y^4+2x^3y^2+2x^2y^3+4x^2y^2\right]\)

\(=\left(x-y\right)^2\cdot\left[x^4+y^4+6x^2y^2+2x^3y^2+2x^2y^3\right]\)