Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(2a^2+5ab-3b^2-7b-2\)
\(=\left(2a^2+6ab+2a\right)-\left(ab+3b^2+b\right)-\left(2a+6b+2\right)\)
\(=2a\left(a+3b+1\right)-b\left(a+3b+1\right)-2\left(a+3b+1\right)\)
\(=\left(2a-b-2\right)\left(a+3b+1\right)\)
b. \(2x^2-7xy+x+3y^2-3y\)
\(=\left(2x^2-xy\right)-\left(6xy-3y^2\right)+\left(x-3y\right)\)
\(=x\left(2x-y\right)-3y\left(2x-y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
c. \(6x^2-xy-2y^2+3x-2y\)
\(=\left(6x^2+3xy\right)-\left(4xy-2y^2\right)+\left(3x-2y\right)\)
\(=3x\left(2x+y\right)-2y\left(2x+y\right)+\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(2x+y\right)+\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(2x+y+1\right)\)
a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )
b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2
c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )
d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )
e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )
f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )
g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )
a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)
b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)
c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)
d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)
\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)
e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)
\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)
\(=3\left(x-y\right)\left(x+y+4\right)\)
f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)
\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)
g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)
\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)
\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
\(A=x^2-xy+\frac{y^2}{4}+\frac{3}{4}\left(y^2-4y+4\right)+2013\)
\(=\left(x-\frac{y}{2}\right)^2+\frac{3}{4}\left(y-2\right)^2+2013\ge2013\)
\(B\) đề thiếu
\(C\) đề sai, dấu của \(y^2\) là âm thì không tồn tại GTNN
\(P=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
\(2Q=-4x^2-20y^2+12xy+8x-6y+4\)
\(=-\left(4x^2+9y^2+4-12xy-8x+12y\right)-11\left(y^2-\frac{6}{11}y+\frac{36}{121}\right)+\frac{97}{11}\)
\(=-\left(2x-3y-2\right)^2-11\left(y-\frac{3}{11}\right)^2+\frac{97}{11}\le\frac{97}{11}\)
\(\Rightarrow Q\le\frac{97}{22}\)
\(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left(\left(x+y\right)^2-z^2\right)\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)
\(3x^2+6xy+3y^2-3z^2\)
\(\text{Phân tích thành nhân tử}\)
\(\left(-3\right)\left(z-y-x\right)\left(z+y+x\right)\)
\(2x^2+4x+2-2y^2\)
\(\text{Phân tích thành nhân tử}\)
\(\left(-2\right)\left(y-x-1\right)\left(y+x+1\right)\)
\(2x^2-2xy-4x+4y\)
\(\text{Phân tích thành nhân tử}\)
\(\left(-2\right)\left(x-2\right)\left(y-x\right)\)
\(\left(4x^2-3y\right)-\left(3x^2-4y\right).3y\)
\(=4x^2-3y-9x^2y-12y^2\)
\(=-8y^2-3y-9x^2y\)