K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

\(\left(4x^2-3y\right)-\left(3x^2-4y\right).3y\)

\(=4x^2-3y-9x^2y-12y^2\)

\(=-8y^2-3y-9x^2y\)

31 tháng 8 2020

a. \(2a^2+5ab-3b^2-7b-2\)

\(=\left(2a^2+6ab+2a\right)-\left(ab+3b^2+b\right)-\left(2a+6b+2\right)\)

\(=2a\left(a+3b+1\right)-b\left(a+3b+1\right)-2\left(a+3b+1\right)\)

\(=\left(2a-b-2\right)\left(a+3b+1\right)\)

b. \(2x^2-7xy+x+3y^2-3y\)

\(=\left(2x^2-xy\right)-\left(6xy-3y^2\right)+\left(x-3y\right)\)

\(=x\left(2x-y\right)-3y\left(2x-y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y\right)+\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x-y+1\right)\)

c. \(6x^2-xy-2y^2+3x-2y\)

\(=\left(6x^2+3xy\right)-\left(4xy-2y^2\right)+\left(3x-2y\right)\)

\(=3x\left(2x+y\right)-2y\left(2x+y\right)+\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(2x+y\right)+\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left(2x+y+1\right)\)

19 tháng 10 2020

a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )

b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2

c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )

d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )

e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )

f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )

g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )

19 tháng 10 2020

a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)

b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)

c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)

\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)

e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)

\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)

\(=3\left(x-y\right)\left(x+y+4\right)\)

f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)

\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)

g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)

\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)

\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)

1 tháng 8 2017

a, = 8x3 + 27x3

b, = x3 - 4 y3

2 câu còn lại bn tự làm nha

17 tháng 9 2017

a) \(3x^2-4y+4x-3y^2\)

\(=\left(3x^2-3y^2\right)-\left(4y-4x\right)\)

\(=3\left(x^2-y^2\right)-4\left(x+y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-4\left(x+y\right)\)

\(=\left(x+y\right)\left(3\left(x-y\right)-4\right)\)

\(=\left(x+y\right)\left(3x-3y-4\right)\)

30 tháng 7 2016

D= 5x^2+8xy+5y^2-2x+2y  

=4x^2+8xy+4y^2-2x+2y+y^2+x^2

=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2

(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2

suy ra D>=-1/2 nên D có GTNN là -1/2

30 tháng 7 2016

Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y

5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1  

5D = ( 5x + 4y - 1)2 + 9 (y + 1)- 2

D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1) -  \(\frac{2}{5}\)  \(\ge\)\(\frac{-2}{5}\)

Dấu "=" xảy ra khi y+1 = 0  \(\Leftrightarrow\)y = -1

                          5x + 4y - 1 = 0  \(\Leftrightarrow\)x=1

Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1

25 tháng 11 2018

5x2 - 5x - 3x2 + 3x

= 5x( x - 1 ) - 3x( x - 1 )

= ( x - 1 )( 5x - 3x )

4x2 - 8xy + 4y2 - 16z2

= ( 2x - 2y )2 - (4z)2

= ( 2x - 2y - 4z )( 2x - 2y + 4z )

3x2 + 7x + 2

= 3x+ 6x + x + 2

= 3x( x + 2 ) + ( x + 2 )

= ( x+ 2 )( 3x + 1 )

HỌC TỐT !

NV
30 tháng 10 2019

\(A=x^2-xy+\frac{y^2}{4}+\frac{3}{4}\left(y^2-4y+4\right)+2013\)

\(=\left(x-\frac{y}{2}\right)^2+\frac{3}{4}\left(y-2\right)^2+2013\ge2013\)

\(B\) đề thiếu

\(C\) đề sai, dấu của \(y^2\) là âm thì không tồn tại GTNN

\(P=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)

\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

\(2Q=-4x^2-20y^2+12xy+8x-6y+4\)

\(=-\left(4x^2+9y^2+4-12xy-8x+12y\right)-11\left(y^2-\frac{6}{11}y+\frac{36}{121}\right)+\frac{97}{11}\)

\(=-\left(2x-3y-2\right)^2-11\left(y-\frac{3}{11}\right)^2+\frac{97}{11}\le\frac{97}{11}\)

\(\Rightarrow Q\le\frac{97}{22}\)

\(3x^2+6xy+3y^2-3z^2\)

\(=3\left(x^2+2xy+y^2-z^2\right)\)

\(=3\left(\left(x+y\right)^2-z^2\right)\)

\(=3\left(x+y+z\right)\left(x+y-z\right)\)

\(3x^2+6xy+3y^2-3z^2\)

\(\text{Phân tích thành nhân tử}\)

\(\left(-3\right)\left(z-y-x\right)\left(z+y+x\right)\)

\(2x^2+4x+2-2y^2\)

\(\text{Phân tích thành nhân tử}\)

\(\left(-2\right)\left(y-x-1\right)\left(y+x+1\right)\)

\(2x^2-2xy-4x+4y\)

\(\text{Phân tích thành nhân tử}\)

\(\left(-2\right)\left(x-2\right)\left(y-x\right)\)