Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
May ban oi cau hoi nay la rut gon xong roiu moi tinh nah
1: \(\Leftrightarrow-4x^2+3x-4x^2+8x=10\)
=>-8x^2+11x-10=0
=>\(x\in\varnothing\)
2: \(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)
=>-14x+5=x-2
=>-15x=-7
=>x=7/15
3: \(\Leftrightarrow12x^2-12x^2+20x=10x-17\)
=>10x=-17
=>x=-17/10
4: \(\Leftrightarrow4x^2-2x+3-4x^2+20x=7x-3\)
=>18x+3=7x-3
=>11x=-6
=>x=-6/11
5: \(\Leftrightarrow-3x+15+5x-5+3x^2=4-x\)
\(\Leftrightarrow3x^2+2x+10-4+x=0\)
=>3x^2+3x+6=0
hay \(x\in\varnothing\)
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
\(\left(x^2+3\right)\left(3-x^2\right)\)
\(\left(x^2+3\right)\left(-x^2+3\right)\)
\(\left(-x^2+3\right).x^2+3\left(-x^2+3\right)\)
\(-x^2.x^2+3x^2+3\left(-x^2+3\right)\)
\(-x^2.x^2+3x^2-3x^2+9\)
\(-x^2.x^2+9\)
Theo bài ra , ta có :
\(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt x2 + x = z =) x2 + x - 2 = z - 2
\(\Rightarrow z\left(z-2\right)=24\)
\(\Leftrightarrow z^2-2z=24\)
\(\Leftrightarrow z^2-2z-24=0\)
\(\Leftrightarrow\left(z+4\right)\left(z-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}z=-4\\z=6\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x^2+x=-4\\x^2+x=6\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-3\end{cases}}\)
Vậy S = { -1/2 ; -3 }
b)
\(x^4+3x^3+4x^2+3x+1=0\)
\(\Leftrightarrow x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+2x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+x^2+x^2+x+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\left(x^2+x+1\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)(1)
Ta có :
\(x^2+x+1\)
\(\Leftrightarrow x^2+2\times\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\in Z\)(2)
Từ (1) và (2) suy ra phương trình có dạng
\(\left(x+1\right)^2=0\)( Vì phương trình (2) luôn lớn hơn 0 )
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy S = {-1}
Chúc bạn học tốt =))