K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2022

sửa đề

\(\left(4x^2-1\right)\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2-1=0\\x^3+8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=\dfrac{1}{4}\\x^3=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)

`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`

`= 2x^2+3`

 

`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)

`= -x^3+(3x^2-x^2)+(-3x+2x)+2`

`= -x^3+2x^2-x+2`

`P(x)-Q(x)-R(x)=0`

`-> P(X)-Q(x)=R(x)`

`-> R(x)=P(x)-Q(x)`

`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`

`-> R(x)=2x^2+3+x^3-2x^2+x-2`

`= x^3+(2x^2-2x^2)+x+(3-2)`

`= x^3+x+1`

`@`\(\text{dn inactive.}\)

a: P(x)-Q(x)-R(x)=0

=>R(x)=P(x)-Q(x)

=2x^2+3+x^3-2x^2+x-2

=x^3+x+1

22 tháng 12 2017

Hệ số của lũy thừa bậc 5 là 6

Hệ số của lũy thừa bậc 3 là – 4

Hệ số của lũy thừa bậc 2 là 9

Hệ số của lũy thừa bậc 1 là – 2

Hệ số của lũy thừa bậc 0 là 2

23 tháng 6 2017

Chọn C

Ta có: P(x) + Q(x) = x3+ x2+ 2x-1

⇒ Q(x) = (x3 + x2 + 2x-1) - P(x)

= 2x3 + 4x2 - 8x - 3.

a: f(0)=0+0-0+3=3

=>x=0 ko là nghiệm của f(x)

g(0)=0+0+0+1=1

=>x=0 ko là nghiệm của g(x)

b: f(x)+g(x)

=x^3+4x^2-5x+3+x^3+3x^2-2x+1

=2x^3+7x^2-7x+4

c: f(x)-g(x)

=x^3+4x^2-5x+3-x^3-3x^2+2x-1

=x^2-3x+2

\(A=5x^3-7x^2+3x^3-4x^2+x^2-x^3+5x-1=7x^3-10x^2+5x-1\)

\(B=5x^3+3x^2-7x^4-5x^3+4x^2-x^4+3=-8x^4+7x^2+3\)

5 tháng 3 2022

\(A=7x^3-10x^2+5x-1\)

\(B=-8x^4+7x^2+3\)

12 tháng 9 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

a: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)

b:\(=\dfrac{x^3+x^2+3x^2+3x+5x+5}{x+1}=x^2+3x+5\)

c:\(=\dfrac{x^3-3x^2-7x+2x^2-6x-14}{x^2-3x-7}=x+2\)

d: \(=\dfrac{x^2\left(x+5\right)+5x+25-25}{x+5}=x^2+5-\dfrac{25}{x+5}\)

21 tháng 3 2022

giúp với

23 tháng 3 2022

a.\(P\left(x\right)=1+3x^5-4x^2+x^5+x^3-x^2+3x^3\)

            \(=1-5x^2+4x^3+4x^5\)

   \(Q\left(x\right)=2x^5-x^2+4x^5-x^4+4x^2-5x\)

           \(=-5x+3x^2+3x^4+2x^5\)

b.\(P\left(x\right)+Q\left(x\right)=1-5x^2+4x^3+4x^5-5x+3x^2+3x^4+2x^5\)

                          \(=6x^5+3x^4+4x^3-2x^2-5x+1\)

   \(P\left(x\right)-Q\left(x\right)=1-5x^2+4x^3+4x^5+5x-3x^2-3x^4-2x^5\)

                           \(=2x^5-3x^4+4x^3-8x^2+5x+1\)

c.\(P\left(x\right)+Q\left(x\right)=6x^5+3x^4+4x^3-2x^2-5x+1\)

 \(x=-1\)

\(P\left(x\right)+Q\left(x\right)=6.\left(-1\right)^5+3.\left(-1\right)^4+4.\left(-1\right)^3-5.\left(-1\right)+1\)

                       \(=-6+3-4+5+1=-1\)

d.\(Q\left(0\right)=\)\(-5x+3x^2+3x^4+2x^5\)

            \(=0\)

\(P\left(0\right)=\)\(1-5x^2+4x^3+4x^5\)

            \(=1\)

Vậy x=0 ko là nghiệm của đa thức P(x)