Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
\(4x^2-4x-5=4x^2-4x+1-6=\left(2x-1\right)^2-6\ge-6\)
\(Min=-6\Leftrightarrow x=\dfrac{1}{2}\)
\(4x^2+12x+10=4\left(x^2+3x+\dfrac{9}{4}\right)+1=4\left(x+\dfrac{3}{2}\right)^2+1\ge1\)
\(Min=1\Leftrightarrow x=-\dfrac{3}{2}\)
\(4x^2-12x-5=4\left(x^2-3x+\dfrac{9}{4}\right)-14=4\left(x-\dfrac{3}{2}\right)^2-14\ge-14\)
\(Min=-14\Leftrightarrow x=\dfrac{3}{2}\)
\(9x^2+12x+8=\left(9x^2+12x+4\right)+4=\left(3x+2\right)^2+4\ge4\)
\(Min=4\Leftrightarrow x=-\dfrac{2}{3}\)
a, \(x^2-12x-2x+24=0\Leftrightarrow x^2-14x+24=0\Leftrightarrow\left(x-12\right)\left(x-2\right)=0\)
TH1 : x = 12 ; TH2 : x = 2
b, \(x^2-5x-24=0\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
TH1 : x = 8 ; TH2 : x = -3
c, \(4x^2-12x-7=0\Leftrightarrow\left(2x+1\right)\left(2x-7\right)=0\)
TH1 : x = -1/2 ; TH2 : x = 7/2
d, \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\Leftrightarrow x=-2\)
Tương tự HĐT thôi :)
a) x2 - 12x - 2x + 24 = 0
<=> x( x - 12 ) - 2( x - 12 ) = 0
<=> ( x - 12 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x-12=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)
b) x2 - 5x - 24 = 0
<=> x2 + 3x - 8x - 24 = 0
<=> x( x + 3 ) - 8( x + 3 ) = 0
<=> ( x + 3 )( x - 8 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
c) 4x2 - 12x - 7 = 0
<=> 4x2 + 2x - 14x - 7 = 0
<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0
<=> ( 2x + 1 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
d) x3 + 6x2 + 12x + 8 = 0
<=> ( x + 2 )3 = 0
<=> x + 2 = 0
<=> x = -2
e) ( x + 2 )2 - x2 + 4 = 0
<=> x2 + 4x + 4 - x2 + 4 = 0
<=> 4x + 8 = 0
<=> 4x = -8
<=> x = -2
f) 2( x + 5 ) = x2 + 5x
<=> x2 + 5x - 2x - 10 = 0
<=> x( x + 5 ) - 2( x + 5 ) = 0
<=> ( x + 5 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
m) 16( 2x - 3 )2 - 25( x - 5 )2 = 0
<=> 42( 2x - 3 )2 - 52( x - 5 )2 = 0
<=> [ 4( 2x - 3 ) ]2 - [ 5( x - 5 ) ]2 = 0
<=> ( 8x - 12 )2 - ( 5x - 25 )2 = 0
<=> [ 8x - 12 - ( 5x - 25 ) ][ 8x - 12 + ( 5x - 25 ) ] = 0
<=> ( 8x - 12 - 5x + 25 )( 8x - 12 + 5x - 25 ) = 0
<=> ( 3x + 13 )( 13x - 37 ) = 0
<=> \(\orbr{\begin{cases}3x+13=0\\13x-37=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)
n) x2 - 6x + 4 = 0
<=> ( x2 - 6x + 9 ) - 5 = 0
<=> ( x - 3 )2 - ( √5 )2 = 0
<=> ( x - 3 - √5 )( x - 3 + √5 ) = 0
<=> \(\orbr{\begin{cases}x-3-\sqrt{5}=0\\x-3+\sqrt{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)
a) \(x^2-12x-2x+24=0\)
\(\Leftrightarrow x\left(x-12\right)-2\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)
b) \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(8x+24\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
c) \(4x^2-12x-7=0\)
\(\Leftrightarrow\left(4x^2-14x\right)+\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)
d) \(x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Rightarrow x=-2\)
e) \(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow4x+8=0\)
\(\Rightarrow x=-2\)
f) \(2\left(x+5\right)=x^2+5x\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
m) \(16\left(2x-3\right)^2-25\left(x-5\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x-12=5x-25\\8x-12=25-5x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-13\\13x=37\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)
n) \(x^2-6x+4=0\)
\(\Leftrightarrow\left(x-3\right)^2-5=0\)
\(\Leftrightarrow\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)
\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
\(TH1:3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)
\(TH2:x+6=0\Leftrightarrow x=-6\)
\(TH3:x^2+5=0\Leftrightarrow x^2=5\Leftrightarrow x=\sqrt{5}\)( ns vô nghiệm cx ko sai nha )
\(\left(2x+5\right)^2=\left(3x-1\right)^2\)
\(2x+5=3x-1\)
\(2x-3x=-1-5\)
\(-1x=-6\)
\(x=6\)
a) (x - 4)2 - 36 = 0
=> (x - 4)2 = 36
=> x - 4 = 6 hoặc x - 4 = -6
=> x = 10 hoặc x = -2
b) hình như sai đề bn ạ
c) x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 5)(x - 4) = 0
=> x - 5 = 0 hoặc x - 4 = 0
=> x = 5 hoặc x = 4
\(4x^2-12x+5=0\)
\(4\left(x-3\right)x+5=0\)
\(4x^2+5=12x\)
\(\left(2x-5\right)\left(2x-1\right)=0\)
\(\Rightarrow x=\hept{\begin{cases}0,5\\2,5\end{cases}}\)
\(\Leftrightarrow\left(4x^2-2x\right)-\left(10x-5\right)=0\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)
\(4x^2-12x+5=0\Leftrightarrow4x^2-10x-2x+5=0\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
4x2 - 12x + 5 = 0 <=> 4x2 - 2x - 10x + 5 =0
<=> 2x ( 2x - 1) - 5 (2x - 1) = 0
<=> (2x-5)(2x-1) = 0
=> \(\left\{{}\begin{matrix}2x-5=0< =>x=2,5\\2x-1=0< =>x=0,5\end{matrix}\right.\)
Vậy với x = 0,5 hoặc x = 2,5 thì ta đc PT trên.