
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1
Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)
<=> \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
<=> \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)
Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm
Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)
Vậy pt có 1 nghiệm x= 1.
Ta giải pt bậc ba theo công thức Cardano:
\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)
Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)
\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)
Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)
Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)
Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.
Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.
\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)
Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

\(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow4x^2-4x+9=9\Leftrightarrow4x^2-4x=0\)
\(\Leftrightarrow4x\left(x-1\right)=0\Leftrightarrow x=0;1\)
\(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow\left(\sqrt{4x^2-4x+9}\right)^2=3^2\)
\(\Leftrightarrow4x^2-4x+9=9\)
\(\Leftrightarrow4x^2-4x=0\)\(\Leftrightarrow4x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của pt là S={0;1}

PT có 2 nghiệm `<=> \Delta' >=0`
`<=> 4(2m+3)^2 -4(4m^2-3) >=0`
`<=>16m^2+48m+36-16m^2+12>=0`
`<=>m >= -1`
Viet: `{(x_1+x_2=-2m-3),(x_1x_2=4m^2-3):}`
Theo đề: `x_1^2+x_2^2=1/2`
`<=>(x_1+x_2)^2-2x_1x_2=1/2`
`<=>(-2m-3)^2 -2(4m^2-3)=1/2`
`<=>-4m^2+12m+15=1/2`
`<=>` \(\left[{}\begin{matrix}m=\dfrac{6+\sqrt{94}}{4}\left(TM\right)\\m=\dfrac{6-\sqrt{94}}{4}\left(L\right)\end{matrix}\right.\)
Vậy....

\(x-5\)
\(=\left(\sqrt{x}\right)^2-\left(\sqrt{5}\right)^2\)
\(=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)

\(3x^4+4x^3-3x^2-2x+1=0\)
\(\Leftrightarrow3x^4+x^3-x^2+3x^3+x^2-x-3x^2-x+1=0\)
\(\Leftrightarrow x^2\left(3x^2+x-1\right)+x\left(3x^2+x-1\right)-\left(3x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x-1\right)\left(3x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-1=0\left(1\right)\\3x^2+x-1=0\left(2\right)\end{cases}}\)
- \(\Delta_{\left(1\right)}=1^2-\left(-4\left(1.1\right)\right)=5\)
\(\Leftrightarrow x_{1,2}=\frac{-1\pm\sqrt{5}}{2}\left(tm\right)\)
- \(\Delta_{\left(2\right)}=1^2-\left(-4\left(3.1\right)\right)=13\)
\(x_{1,2}=\frac{-1\pm\sqrt{13}}{6}\left(tm\right)\)
\(\Leftrightarrow\dfrac{4x^2}{1}-\dfrac{3x}{25}=0\)
\(\Leftrightarrow\dfrac{\left(2x\right)^2.25}{25}-\dfrac{3x}{25}=0\) ( đkxđ x thuộc R)
\(\Leftrightarrow100x^2-3x=0\)
\(\Leftrightarrow x\left(100x-3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=\left(0+3\right):100=\dfrac{3}{100}\end{matrix}\right.\)(tm)
Vây...