Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x+y\right)^2-8\left(x+y\right)+12\)
\(=\left[\left(x+y\right)^2-8\left(x+y\right)+16\right]-4\)
\(=\left(x+y-4\right)^2-4\)
\(=\left(x+y\right)\left(x+y-8\right)\)
a: \(B=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{10}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)
b: \(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)
\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)
\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)
c: \(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=\dfrac{-5}{2}\)
d: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{1-4x^2}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)
\(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x+4}\cdot\dfrac{3}{2\left(1-2x\right)}=\dfrac{3\left(2x+1\right)}{x+4}\)
1 ) \(x\left(a-b\right)+a-b=\left(x+1\right)\left(a-b\right)\)
2 ) \(2x\left(b-a\right)+a-b=2x\left(b-a\right)-\left(b-a\right)=\left(2x-1\right)\left(b-a\right)\)
3 ) \(-2x-2y+ax+ay=-2\left(x+y\right)+a\left(x+y\right)=\left(a-2\right)\left(x+y\right)\)
4 ) \(x^2-xy-2x+2y=x\left(x-y\right)-2\left(x-y\right)=\left(x-2\right)\left(x-y\right)\)
5 ) \(5x^2y+5xy^2+a^2x+a^2y\)
\(=5xy\left(x+y\right)+a^2\left(x+y\right)\)
\(=\left(5xy+a^2\right)\left(x+y\right)\)
6 ) \(2x^2-6xy+5x-15y\)
\(=2x\left(x-3y\right)+5\left(x-3y\right)\)
\(=\left(2x+5\right)\left(x-3y\right)\)
7 ) \(ax^2-3axy+bx-3by\)
\(=\left(ax^2+bx\right)-\left(3axy+3by\right)\)
\(=x\left(ax+b\right)-3y\left(ax+b\right)\)
\(=\left(x-3y\right)\left(ax+b\right)\)
8 ) \(x^2+4x-5x-20=0\)
\(\Leftrightarrow x\left(x+4\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)
9 ) \(x^2+10x-2x-20=0\)
\(\Leftrightarrow x\left(x+10\right)-2\left(x+10\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
10 ) \(x^2-6x-4x+24=0\)
\(\Leftrightarrow x\left(x-6\right)-4\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)
:D
a) (7x - 8)(7x + 8) - 10(2x + 3)2 + 5x(3x - 2)2 - 4x(x - 5)2
= 49x2 - 64 - 10(4x2 + 12x + 9) + 5x(9x2 - 12x + 4) - 4x(x2 - 10x + 25)
= 49x2 - 64 - 40x2 - 120x - 90 + 45x3 - 60x2 + 20x - 4x3 + 40x - 100x
= 41x3 - 51x2 - 160x - 154
b) (x2 - 3)(x2 + 3) - 5x2(x + 1)2 - (x2 - 3x)(x2 - 2x) + 4x(x + 2)2
= x4 - 9 - 5x2(x2 + 2x + 1) - x4 + 5x3 - 6x2 + 4x(x2 + 4x + 4)
= 5x3 - 6x2 - 5x4 - 10x3 - 5x2 + 4x3 + 16x2 + 16x - 9
= -5x4 - x3 + 5x2 + 16x - 9
Trả lời:
a , ( 7x - 8 ) ( 7x + 8 ) - 10 ( 2x + 3 )2 + 5x ( 3x - 2 )2 - 4x ( x - 5 )2
= 49x2 - 64 - 10 ( 4x2 + 12x + 9 ) + 5x ( 9x2 - 12x + 4 ) - 4x ( x2 - 10x + 25 )
= 49x2 - 64 - 40x2 + 120x - 90 + 45x3 - 60x2 + 20x - 4x3 + 40x2 - 100x
= 41x3 - 11x2 + 40x - 154
b , ( x2 - 3 ) ( x2 + 3 ) - 5x2 ( x + 1 )2 - ( x2 - 3x ) ( x2 - 2x ) + 4x ( x + 2 )2
= x4 - 9 - 5x2 ( x2 + 2x + 1 ) - ( x4 - 2x3 - 3x3 + 6x2 ) + 4x ( x2 + 4x + 4 )
= x4 - 9 - 5x4 - 10x3 - 5x2 - x4 + 2x3 + 3x3 - 6x2 + 4x3 + 16x2 + 16x
= - 5x4 - x3 + 5x2 + 16x - 9
a) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x^2+x+1}\)
b) \(\dfrac{9}{x^3-9x}-\dfrac{-1}{x+3}\)
\(=\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\)
\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\)
c) \(\dfrac{x^3-8}{5x+10}.\dfrac{x^2+4x}{x^2+2x+4}\)
\(=\dfrac{x\left(x-2\right)\left(x^2+2x+4\right)\left(x+4\right)}{5\left(x+2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{x\left(x-2\right)\left(x+4\right)}{5\left(x+2\right)}\)
d) \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}.\dfrac{2\left(2-x\right)}{x+2}\)
\(=-\dfrac{10\left(x+2\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{5}{2}\)
e) \(\dfrac{\left(x-13\right)^2}{2x^5}.\dfrac{-3x^2}{x-13}\)
\(=\dfrac{x-13}{2x^3}.\dfrac{-3}{1}\)
\(=\dfrac{-3\left(x-13\right)}{2x^3}\)
g) \(\dfrac{x^2+6x+9}{1-x}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)
\(=-\dfrac{\left(x+3\right)^2}{x-1}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)
\(=-\dfrac{\left(x+3\right)^2\left(x-1\right)^2}{2\left(x-1\right)\left(x+3\right)^2}\)
\(=-\dfrac{x-1}{2}\).
a) \(10x^2-29x+10\)
\(=10x^2-4x-25x+10\)
\(=2x\left(5x-2\right)-5\left(5x-2\right)\)
\(=\left(5x-2\right)\left(2x-5\right)\)