Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x
3(4x-5)^2-8x+10=0
Giải em theo cách tách đa thức = nhân tự vd 8x+10 là 2.(4x+5)
Giúp em vs please
\(3\left(4x-5\right)^2-8x+10=0\)
\(\Leftrightarrow\)\(3\left(4x-5\right)\left(4x-5\right)-2\left(4x-5\right)=0\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left[2\left(4x-5\right)-2\right]=0\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(8x-10-2\right)=0\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(8x-12\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-5=0\\8x-12=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{4}\\x=1,5\end{cases}}\)
Vậy...
\(3\left(4x-5\right)^2-8x+10=0\)
<=> \(3\left(16x^2-40x+25\right)-8x+10=0\)
<=> \(48x^2-120x+75-8x+10=0\)
<=> \(48x^2-128x+85=0\)
<=> \(48x^2-68x-60x-85=0\)
<=> \(48x\left(x-\frac{17}{12}\right)-60\left(x-\frac{17}{12}\right)=0\)
<=> \(\left(48x-60\right)\left(x-\frac{17}{12}\right)=0\)
<=> \(\hept{\begin{cases}48x-60=0\\x-\frac{17}{12}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{4}\\x=\frac{17}{12}\end{cases}}\)
\(a,3x\left(x-4\right)-2x+8=0\)
\(\Rightarrow3x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\4\end{cases}}}\)
Vậy \(x=\frac{2}{3}\)hoặc \(x=4\)
\(b,\left(3x-1\right)^2-\left(3x+2\right)\left(3x+1\right)=2\)
\(\Rightarrow9x^2-6x+1-\left(9x^2+3x+6x+1\right)-2=0\)
\(\Rightarrow9x^2-6x+1-9x^2-3x-6x-1-2=0\)
\(\Rightarrow-15x-2=0\)
\(\Rightarrow-15x=2\)
\(\Rightarrow x=\frac{-2}{15}\)
không nhé
(2x+1)(4x^2-xy+1)-(8x^3-1)
= ((2x)^3 -1) - ( 8x^3 - 1 ) = 0
Vậy là không phụ thuộc vào biến nhé bạn
nhưng đây là toán 8 ,đầu năm thì đc hok hằng đẳng thức nên sẽ áp dụng theo HĐT
đề e đăng sai rồi,sửa:
\(\left(2x+1\right)\left(4x^2-2x+1\right)-\left(8x^3-1\right)\)
\(=8x^3+1-8x^3+1\)
\(=2\)
Vậy gt bt trên ko phụ thuộc vào biến.
`3)(x+4)/(x-3)-(x-3)/(x+4)=(x^2+18x+7)/(x^2+x-12)`
`đk:x ne 3,x ne -4`
Nhân 2 vế với `(x-3)(x+4) ne 0` ta có:
`(x+4)^2-(x-3)^2=x^2+18x+7`
`<=>x^2+8x+16-x^2+6x-9=x^2+18x+7`
`<=>14x+7=x^2+18x+7`
`<=>x^2+4x=0`
`<=>x(x+4)=0`
Vì `x ne -4=>x+4 ne 0`
`<=>x=0`
Vậy `S={0}`
\(4x^2-8x+7\)
\(=\left(2x\right)^2-2\cdot2x\cdot2+2^2+3\)
\(=\left(2x-2\right)^2+3\ge3\forall x>0\forall x\left(đpcm\right)\)
P.s: kí hiệu \(\forall x\)là " với mọi x "
( 4x - 5 ) 2 - 2( 4x - 5 ) = 0
<=> ( 4x - 5 ) ( 4x - 5 - 2 ) = 0
<=> ( 4x - 5 ) ( 4x - 7 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x-5=0\\4x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{7}{4}\end{cases}}}\)
(4x-5)2 - 8x + 10 = 0
(4x-5)2 - 2.(4x-5) = 0
(4x-5).(4x-5 -2) = 0
(4x-5).(4x-7) = 0
=> 4x-5 = 0 => 4x = 5 => x = 5/4
4x-7 = 0 => 4x = 7 => x = 7/4
KL:...