(4x-1)^2-4x^2 phân tích nhân tử">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

\(\left(4x-1\right)^2-4x^2\)

\(=\left(4x-1\right)^2-\left(2x\right)^2\)

\(=\left(4x-1-2x\right)\left(4x-1+2x\right)\)

\(=\left(2x-1\right)\left(6x-1\right)\)

10 tháng 10 2021

`(4x-1)^2-4x^2=(4x-1)^2-(2x)^2=(4x-1-2x)(4x-1+2x)=(2x-1)(6x-1)`

1 tháng 3 2022

`Answer:`

undefined

\(x^3-3x^2+2=x^3-2x^2-2x-\left(x^2-2x-2\right)\)

\(=x.\left(x^2-2x-2\right)-\left(x^2-2x-2\right)\)

\(=\left(x-1\right).\left(x^2-2x-2\right)\)

\(1,x^3-3x^2+2=0\)

\(x^3-x^2-2x^2+2=0\)

\(x^2\left(x-1\right)-2\left(x^2-1\right)=0\)

\(\left(x-1\right)\left(x^2-2x-2\right)=0\)

10 tháng 10 2021

`a,`

`(x+y)^3-1=(x+y)^3-1^3=(x+y-1)[(x+y)^2 +x+y +1]  =(x+y-1)(x^2 +2xy+y^2 +x+y+1]`

`b,`

`100x^2 - (x^2 +25)^2=(10x)^2-(x^2 +25)^2=(10x-x^2-25)(10x +x^2 +25) = -(x-5)^2 (x+5)^2`

10 tháng 10 2021

a) \(\left(x+y\right)^3-1\)

\(=\left(x+y\right)^3-1^3\)

\(=[\left(x+y\right)-1][\left(x+y\right)^2+\left(x+y\right)1+1^2]\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)\)

b) \(100x^2-\left(x^2+25\right)^2\)

\(=\left(10x\right)^2-\left(x^2+25\right)^2\)

\(=[10x-\left(x^2+25\right)][10x+\left(x^2+25\right)]\)

\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)

\(=\left(-x^2+10x-25\right)\left(x^2+10x+25\right)\)

\(=-\left(x^2-10x+25\right)\left(x^2+10x+25\right)\)

\(=-\left(x-5\right)^2.\left(x+5\right)^2\)

6 tháng 3 2021

\(x^2-\left(x+3\right)\left(3x+1\right)=\)\(9\)

\(\Leftrightarrow x^2-9-\left(x+3\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3-3x-1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-2x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\-2x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\-2x=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)

Vậy phương trình có tập nghiệm \(S=\left\{-3;-2\right\}\)

6 tháng 3 2021

\(x^3+4x+5=0\)

\(\Leftrightarrow\left(x^3+1\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2=\frac{-19}{4}\left(vn\right)\end{cases}}\)(vn: vô nghiệm).\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm duy nhất : \(x=-1\)

19 tháng 10 2021

Trả lời:

a, \(\left(xy+4\right)^2-4\left(x+y\right)^2\)

\(=\left(xy+4\right)^2-\left[2\left(x+y\right)\right]^2\)

\(=\left(xy+4\right)^2-\left(2x+2y\right)^2\)

\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)

\(=\left[\left(xy-2x\right)-\left(2y-4\right)\right]\left[\left(xy+2x\right)+\left(2y+4\right)\right]\)

\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)

\(=\left(y-2\right)\left(x-2\right)\left(y+2\right)\left(x+2\right)\)

b, \(2x-\sqrt{x}=2.\sqrt{x}.\sqrt{x}-\sqrt{x}=\sqrt{x}.\left(2\sqrt{x}-1\right)\)

9 tháng 4 2021

Bài 1 : 

a, \(A=\frac{4x^2}{4-x^2}+\frac{2+x}{2-x}-\frac{2-x}{x+2}\)ĐK : \(x\ne\pm2\)

\(=\frac{4x^2+\left(2+x\right)^2-\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+x^2+4x+4-\left(x^2-4x+4\right)}{\left(2-x\right)\left(x+2\right)}\)

\(=\frac{5x^2+4x+4-x^2+4x-4}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+8x}{\left(2-x\right)\left(x+2\right)}=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}=\frac{4x}{2-x}\)

b, Ta có P = A : B hay \(\frac{4x}{2-x}.\frac{x\left(2-x\right)}{x-3}=\frac{4x^2}{x-3}< 0\)

\(\Rightarrow x-3< 0\)do \(4x^2\ge0\forall x\)

\(\Leftrightarrow x< 3\)

Kết hợp với giả thiết ta có : \(x< 3;x\ne\pm2\)

9 tháng 4 2021

quên mất, Với P = -1 hay \(\frac{4x^2}{x-3}=-1\Rightarrow4x^2=-x+3\Leftrightarrow4x^2+x-3=0\)

\(\Leftrightarrow4x^2+4x-3x-3=0\Leftrightarrow4x\left(x+1\right)-3\left(x+1\right)=0\)

\(\Leftrightarrow\left(4x-3\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-1\end{cases}}\)

Vậy với P = -1 thì x = -1 ; x = 3/4 

Bài 2 : 

a, \(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)ĐK : \(x\ne\pm3\)

\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}=\left(\frac{-3}{x+3}\right).\frac{x+3}{3x^2}=\frac{-1}{x^2}\)

b, Ta có : \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

TH1 : Thay x = 1 vào biểu thức trên ta được : \(\frac{-1}{1}=-1\)tương tự với 1 

TH2 : ... 

c, Ta có : A < -1 hay \(\frac{-1}{x^2}< 1\Leftrightarrow\frac{-1}{x^2}-1< 0\Leftrightarrow\frac{-1-x^2}{x^2}< 0\)

\(\Rightarrow-\left(x^2+1\right)< 0\)do \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2< -1\)( vô lí )

Vậy ko có giá trị x thỏa mãn A < -1 

d, Ta có : \(A=\frac{x}{8}\)hay \(-\frac{1}{x^2}=\frac{x}{8}\Rightarrow x^3=-8\Leftrightarrow x=-2\)

Vậy với A = x/8 thì x = -2 

25 tháng 7 2021

\(1,a,A=\frac{356^2-144^2}{256^2-244^2}=\frac{\left(356-144\right)\left(356+144\right)}{\left(256-244\right)\left(256+244\right)}=\frac{212.500}{12.500}\)

\(A=\frac{212}{12}=\frac{53}{3}\)

\(b,B=253^2+94.253+47^2\)

\(B=\left(253+47\right)^2=300^2=90000\)

Bài 2

\(a,x^2-16x=-64\)

\(x^2-16x+64=0\)

\(\left(x-8\right)^2=0\)

\(x=8\)

\(b,\left(x+2\right)^2+4\left(x+2\right)+2=0\)

\(x^2+4x+4+4x+8+2=0\)

\(x^2+8x+14=0\)

\(\sqrt{\Delta}=\sqrt{\left(8^2\right)-\left(4.1.14\right)}=2\sqrt{3}\)

\(x_1=\frac{2\sqrt{3}-8}{2}=\sqrt{3}-4\)

\(x_2=\frac{-2\sqrt{3}-8}{2}=-\sqrt{3}-4\)

27 tháng 8 2021

<=> ax3- 2acx2 + a2bcx + bx2 - 2bxc + ab2c = x3 + 6x2 + 4x - 8

<=> ax3 + ( 2ac + b )x2 + ( a2bc - 2bc )x + ab2c = x3 + 6x2 + 4x - 8

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a=1\\2ac+b=6\\a^2bc-2bc=4\end{cases}};ab^2c=-8\)đến đây tịt :v 

28 tháng 8 2021

(ax + b)(x2 - 2cx + abc) 

= ax3 - 2acx2 + xa2bc + bx2 - 2bcx + ab2

= ax3 + x2(b - 2ac) + x(a2bc - 2bc) + ab2c = x3 + 6x2 + 4x - 8 

Đồng nhất hệ số 

=> a = 1 ; b - 2ac = 6 ; a2bc - 2bc = 4 ; ab2c = -8

Khi đó b - 2c = 6 ; -bc = 4 ; b2c = -8 

=> b = 2 ; c = -2

Vậy a = 1 ; b = 2 ; c = -2