\(4\sqrt{x+5}-\sqrt{x+1}=9+x\)

giải phương trình

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

20 tháng 10 2020

a) \(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)  (đk: \(x\ge0\))

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow-2\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\sqrt{9}\)

\(\Leftrightarrow x=9\)(tmđk)

vậy nghiệm của phtrinh là x = 9

20 tháng 10 2020

b) \(\sqrt{x^2-6x+9}=6\)     (đk: \(x^2-6x+9\ge0\))

bình phương 2 vế, ta được: \(x^2-6x+9=36\)

\(\Leftrightarrow x^2-6x-27=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+3\right)=0\)

\(\Leftrightarrow x=9\)hoặc \(x=-3\)

3 tháng 9 2016

bai nay kho that!

3 tháng 9 2016

kho moi dag .ko kho thi dang lm j

18 tháng 10 2020

a) \(\sqrt{2x-1}=\sqrt{5}\)

ĐK : \(x\ge\frac{1}{2}\)

Bình phương hai vế

pt <=> \(2x-1=25\)

    <=> \(2x=26\)

    <=> \(x=13\left(tm\right)\)

Vậy S = { 13 }

b) \(\sqrt{4-5x}=12\)

ĐK : \(x\le\frac{4}{5}\)

Bình phương hai vế

pt <=> \(4-5x=144\)

    <=> \(-5x=140\)

    <=> \(x=-28\left(tm\right)\)

Vậy S = { -28 }

c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]> 

<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)

<=> \(\left|x+3\right|=3x-1\)

<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)

Vậy S = { 2 }

d) \(2\sqrt{x}\le\sqrt{10}\)

ĐK : \(x\ge0\)

Bình phương hai vế

bpt <=> \(4x\le10\)

      <=> \(x\le\frac{10}{4}\)

Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)

18 tháng 10 2020

a) \(ĐKXĐ:x\ge\frac{1}{2}\)

 \(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=3\)

b) \(ĐKXĐ:x\le\frac{4}{5}\)

\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )

\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=-28\)

c) \(ĐKXĐ:x\ge\frac{1}{3}\)

\(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)

thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)

\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)

\(\Leftrightarrow x=\frac{-1}{2}\)(  không thỏa mãn ĐKXĐ )

+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)

thì \(\left|x+3\right|=x+3\)

\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=2\)

13 tháng 9 2018

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x+16}\right)^2=\left(\sqrt{x+4}+\sqrt{x+9}\right)^2\)

\(\Leftrightarrow x+1+x+16+2.\sqrt{\left(x+1\right).\left(x+16\right)}=x+4+x+9+2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow2x+17+2.\sqrt{\left(x+1\right).\left(x+16\right)}=2x+13+2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow4+2.\sqrt{\left(x+1\right)\left(x+16\right)}=2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow2.\left(2+\sqrt{\left(x+1\right)\left(x+16\right)}\right)=2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow\sqrt{x^2+17x+16}+1=\sqrt{x^2+13x+36}\)

Bình phương 2 vế ta được 

\(x^2+17x+16+1+2.\sqrt{x^2+17x+16}=x^2+13x+36\)

\(\Leftrightarrow2.\sqrt{x^2+17x+16}=-4x+19\)

Bình phương 2 vế ta được 

\(2x^2+34x+32=16x^2-152x+361\)

\(\Leftrightarrow14x^2-186x+329=0\)

\(\Delta=\left(-186\right)^2-4.14.329=16172\)

\(x_1=\frac{186-\sqrt{16172}}{26}=2,262723898\)

\(x_2=\frac{186+\sqrt{16172}}{26}=12,04496841\)

22 tháng 8 2020

\(\sqrt{x+1}+\sqrt{x+16}=\sqrt{x+4}+\sqrt{x+9}\) 

\(\left(\sqrt{x+1}+\sqrt{x+16}\right)^2=\left(\sqrt{x+4}+\sqrt{x+9}\right)^2\)  

\(x+1+x+16+2\sqrt{\left(x+1\right)\left(x+16\right)}=x+4+x+9+2\sqrt{\left(x+4\right)\left(x+9\right)}\)     

\(2x+17+2\sqrt{x^2+17x+16}=2x+13+2\sqrt{x^2+13x+36}\) 

\(4+2\sqrt{x^2+17x+16}=2\sqrt{x^2+13x+36}\)   

\(2+\sqrt{x^2+17x+16}=\sqrt{x^2+13x+36}\) 

\(\left(2+\sqrt{x^2+17x+16}\right)^2=\left(\sqrt{x^2+13x+36}\right)^2\)             

\(4+x^2+17x+16+4\sqrt{x^2+17x+16}=x^2+13x+36\) 

\(4\sqrt{x^2+17x+16}=-4x+16\) 

\(\sqrt{x^2+17x+16}=-x+4\)          

\(\hept{\begin{cases}-x+4\ge0\\x^2+17x+16=\left(-x+4\right)^2\end{cases}}\)    

\(\hept{\begin{cases}-x\ge-4\\x^2+17x+16=x^2-8x+16\end{cases}}\) 

\(\hept{\begin{cases}x\le4\\25x=0\end{cases}}\)  

\(\hept{\begin{cases}x\le4\\x=0\end{cases}}\)      

\(\Rightarrow x=0\) 

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

4 tháng 10 2018

\(\sqrt{x-4\sqrt{x}+4}+\sqrt{x+6\sqrt{x}+9}=5\)  ĐKXĐ : \(x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}+3\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}+3\right|=5\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\sqrt{x}+3=5\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|=2-\sqrt{x}\) ĐK \(x\le4\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=2-\sqrt{x}\\\sqrt{x}-2=\sqrt{x}-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\\text{vô số n}_o\end{cases}}}\)

Vậy \(S=\left\{x\in R/0\le x\le4\right\}\)

4 tháng 10 2018

\(\sqrt{x-4\sqrt{x}+4}+\sqrt{x+6\sqrt{x}+9}=5\)

\(\Leftrightarrow\)\(\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}+3\right)^2}=5\)

\(\Leftrightarrow\)\(\left|\sqrt{x}-2\right|+\left|\sqrt{x}+3\right|=0\)

+) Với \(\hept{\begin{cases}\sqrt{x}-2\ge0\\\sqrt{x}+3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\ge2\\\sqrt{x}\ge-3\end{cases}\Leftrightarrow}}\sqrt{x}\ge2\Leftrightarrow x\ge4\) ta có : 

\(\sqrt{x}-2+\sqrt{x}+3=5\)

\(\Leftrightarrow\)\(2\sqrt{x}=4\)

\(\Leftrightarrow\)\(\sqrt{x}=2\)

\(\Leftrightarrow\)\(x=4\) ( thỏa mãn ) 

+) Với \(\hept{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 2\\\sqrt{x}< -3\end{cases}\Leftrightarrow}x< 4}\) ta có : 

\(2-\sqrt{x}+3-\sqrt{x}=5\)

\(\Leftrightarrow\)\(-2\sqrt{x}=0\)

\(\Leftrightarrow\)\(\sqrt{x}=0\)

\(\Leftrightarrow\)\(x=0\) ( thỏa mãn ) 

Vậy \(x=4\) hoặc \(x=0\)

Chúc bạn học tốt ~ 

PS : mới lớp 8 sai thì thông cảm..