K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

X^2 + 2( m+1) X - m+3 =0

ta có 

( m + 1 ) + m-3 = 0

m^2 + 3m -2 = 0

m1 =  \(\frac{-3\sqrt{17}}{2}\)

m2 = \(\frac{-3-\sqrt{17}}{2}\)

23 tháng 2 2019

chắc ko bạn

NV
11 tháng 4 2020

\(f\left(x\right)=2\left(x^2-6x+9\right)=2\left(x-3\right)^2\)

\(\Rightarrow f\left(x\right)=0\) khi \(x=3\)

\(f\left(x\right)>0\) khi \(x\ne3\)

Vậy:

1. Là phát biểu sai

2. Là phát biểu đúng

3. Là phát biểu đúng

NV
2 tháng 4 2020

Do \(a=1>0\) nên để \(f\left(x\right)>0\) \(\forall x\)

\(\Leftrightarrow\Delta'< 0\)

\(\Leftrightarrow\left(4m-1\right)^2-\left(15m^2-2m-7\right)< 0\)

\(\Leftrightarrow m^2-6m+8< 0\)

\(\Leftrightarrow2< m< 4\)

2 tháng 4 2020

yeu

9 tháng 5 2017

Áp dụng bất đẳng thức Cô-si cho hai số \(x\)\(\dfrac{3}{x}\) ta có:
\(x+\dfrac{3}{x}\ge2.\sqrt{x.\dfrac{3}{x}}=2\sqrt{3}\).
Dấu bằng xảy ra khi: \(x=\dfrac{3}{x}\Leftrightarrow x=\sqrt{3}\).
Vậy giá trị nhỏ nhất của \(f\left(x\right)=2\sqrt{3}\) khi \(x=\sqrt{3}\).