K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Hình:

ABCDEF

Lời giải:

a) Ta có:

E là trung điểm của AB

=> AE=EB=1/2.AB

F là trung điểm của CD

=>DF=FC=1/2.CD

AB=CD (ABCD là hình bình hành)

=> AE=EB=DF=FC

=> EB=DF (1)

Lại có: AB//DC

E ABF CD

=> EB//DF (2)

Từ (1) và (2) => DEBF là hình bình hành.

b) Ta có: DEBF là hình bình hành (Chứng minh trên)

Nên EF và DB cắt nhau tại trung điểm mỗi đường (3)

Mặt khác: ABCD là hình bình hành (gt)

Nên AC và DB cắt nhau tại trung điểm mỗi đường (4)

Từ (3) và (4) => AC, EF, BD cắt nhau tại trung điểm mỗi đường

=> AC, BD, EF cắt nhau tại một điểm. (đpcm)

Chúc bạn học tốt!

30 tháng 5 2017

A D C B E O F M N

a) Trong tứ giác DEBF có:

Hai đường chéo BD và EF cắt nhau tại trung điểm O

Các cạnh đối BE và DF bằng nhau

\(\Rightarrow\) Tứ giác DEBF là hình bình hành.

b) Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, ta có O là trung điểm của BD.

Theo câu a), DEBF là hình bình hành nên trung điểm O của BD cũng là trung điểm của EF.

Vậy AC, BD, EF cùng cắt nhau tại điểm O.

c) \(\Delta ABD\) có các đường trung tuyến AO, DE cắt nhau ở M nên OM = \(\dfrac{1}{3}\) OA.

\(\Delta CBD\) có các đường trung tuyến CO, BF cắt nhau ở N nên ON = \(\dfrac{1}{3}\) OC.

Tứ giác EMFN có các đường chéo cắt nhau tại trung điểm của mỗi đường OM = ON, OE = OF nên là hình bình hành.

3 tháng 11 2018

Bạn kham khảo nha

Ôn tập : Tứ giác

15 tháng 12 2014

a) Tứ giác DEBF là hình bình hành vì có 2 cạnh đối // và bằng nhau

b) Vì DEBF là hình bình hành nên EF và BD giao nhau tại trung điểm của BD

    Vì ABCD cũng là hình bình hành nên AC và BD cũng giao nhau tại trung điểm của BD

=> AC,BD, EF đồng quy

c) Gọi O là giao điểm của AC và BD

Tam giác ABD có M là trọng tâm=> ME=\(\frac{1}{3}\)DE

Chứng minh tương tự trong tam giác BCD => NF=\(\frac{1}{3}\)BF

mà DE=BF( do DEBF là hình bình hành) => ME=NF và có ME//NF (do DE//BF)=> EMFN là hình bình hành

Mình chỉ trình bày ngắn gọn để bạn hiểu hướng giải bài thôi!!! Khi trình bày vào vở bạn phải trình bày chi tiết ra chứ đừng có trình bày như mình nha!!

 

 

 

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :a) MENF là hình bình hành.b) Các đường thẳng AC, BD, MN,...
Đọc tiếp

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?

Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :

a) MENF là hình bình hành.

b) Các đường thẳng AC, BD, MN, EF đồng quy.

Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.

Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 6 : Cho tứ  giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.

          a/ Tính số đo các góc của tứ giác ABCD

          b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm  của đoạn MN.

Bài 7: Cho hình thang ABCD ( AB//CD).

          a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.

          b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.

0
14 tháng 6 2018

a) Xét Tứ giác DEBF ta có:

EB // DF ( vì AB // CD )

EB = DF ( vì = \(\frac{1}{2}\) AB và DC ( AB =DC) ) [ nếu không đúng cách trình bày thì bạn có thể sửa  lại câu từ cho hay]

\(\Rightarrow\)tứ giác DEBF là hbh

30 tháng 11 2017

a b c d o e f m n GT:ae=eb (e là trung điểm) df=cf(f là trung điểm) ac=bc( đường chéo) ab//dc (tchbh) ad//bc

a))có AB=DC (GT) mà E là trung điểm của AB(GT) F là trung điểm của BC(GT) AB//DC(tchbh) ->EB song song và =DF

->Tứ giác DEBF là hình bình hành (dhnb)

b)ta có AC cắt DB tai O vì AC và DB là đường chéo của hbh EF cũng cắt với DB tại O vì DEBF là hình bình hành

-> BD cắt EF và AC tại O

c) Ta có  AD//BC (tc)->DAM=BCN xét tam giác DAM VÀ BCN có góc DAM=BCN cmt AD=BC cạnh đối hbh  AO=AC đường chéo

-> ADM=BCN(c.g.c) ->DM=BN->NF=ME 

xét tứ giác MENF có EM=Fn cmt  ta có EM thuộc ED NF thuộc BF mà ED // BF cạnh đối hình bình hành-> EM//NF

-> Tứ giác MENF là hình bình hành

5 tháng 8 2017

a) Tứ giác DEBF là hình bình hành vì có 2 cạnh đối nhau, song song và bằng nhau.

b) Vì DEBF là hình bình hành nên EF  và BD giao nhau tại trung điểm của BD.

    Vì ABCD cũng là hình bình hành nên AC và BD cũng giao nhau tại trung điểm của BD.

=> AC, BD, EF là đồng quy.

c) Gọi O là giao điểm của AC và BD.

Tam giác ABD có M là trọng tâm.

=>ME = 1/3 DE

Chứng minh tương tự trong tam giác BCD 

=> NF = 1/3 BF

Mà DE = BF ( do DEBF là hình bình hành ) 

=> ME = NF và ME // NF ( vì DE // BF ) 

=> EMFN là hình bình hành.