K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

<=>(2a)^2-2.2a.3+9>=0

<=>(2a-3)^2>=0

dấu "=" xảy ra <=>2a-3=0

<=>2a=3

<=>a=2/3

vậy 4a^2-12a+1>=8 dấu "=" xảy ra <=>a=2/3

6 tháng 3 2019

Ta có: \(4a^2-12a+1\)

\(=4a^2-2.2a.3+9-8\)

\(=\left(4a^2-2.2a.3+9\right)-8\)

\(=\left(2a-3\right)^2-8\)

Mà \(\left(2a-3\right)^2\ge0\)

\(\Rightarrow\left(2a-2\right)^2-8\ge-8\left(ĐPCM\right)\)

6 tháng 4 2019

Bài 1: A = \(\frac{\left(x-1\right)^2}{x^2-x+1}=\frac{x^2-x+1-x}{x^2-x+1}=1-\frac{x}{x^2-x+1}\)
Ta có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\in R\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\end{cases}\Rightarrow A}\ge0\forall x\in R\)

Bài 2: \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow3\left(a^3-a^2b-ab^2+b^3\right)\ge0\)\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng với mọi a; b > 0)

20 tháng 1 2020

Bài 1 bạn tham khảo tại đây nhé:
Tim x,y,z thoa man : x^2 +5y^2 -4xy +10x-22y +Ix+y+zI +26 = 0 ...

Chúc bạn học tốt!

20 tháng 1 2020

@Băng Băng 2k6

31 tháng 3 2018

Liên hệ giữa thứ tự và phép nhân

14 tháng 8 2019

4a a + b a + 1 a + b + 1 + b ≥ 0. 

4 a + ab + a a + ab + a + b + b ≥ 0 

4 a + ab + a + 4b a + ab + a + b ≥ 0

 2a + 2ab + 2a + b ≥ 0 

17 tháng 7 2018

a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)

Với mọi x ta có :

\(\left(x-3\right)^2\ge0\)

\(\Leftrightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-6x+10>0\)

b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)

Với mọi x ta có :

\(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)

\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)

c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi x ta có :

\(\left(x+\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)

d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)

Với mọi x,y ta có :

\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)

\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)

17 tháng 7 2018

2/ Ta có :

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)

3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)

\(x+y=7;xy=-3\)

\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)

17 tháng 7 2018

2.

Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)

Lại có  \(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)

\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )

3.

Ta có hằng đẳng thức  \(\left(x+y\right)^2=x^2+2xy+y^2\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)

Thay  \(x+y=7\)và  \(xy=-3\)vào ta được :

\(x^2+y^2=7^2-2\left(-3\right)\)

\(\Leftrightarrow x^2+y^2=49+6=55\)

Vậy ...

17 tháng 7 2018

1. 

a) Đặt  \(A=x^2-6x+10\)

\(A=\left(x^2-6x+9\right)+1\)

\(A=\left(x-3\right)^2+1\)

Mà  \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1>0\)

Vậy ...

b) Đặt \(B=x^2-4x+7\)

\(B=\left(x^2-4x+4\right)+3\)

\(B=\left(x-2\right)^2+3\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B\ge3\)

Vậy ...

3 tháng 6 2018

:\(x^4-4x+3=\left(x^4-x^3\right)+\left(x^3-x^2\right)+\left(x^2-x\right)-\left(3x-3\right)\)

                                  \(=x^3\left(x-1\right)+x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)\)

                                \(=\left(x^3+x^2+x-3\right)\left(x-1\right)\)

   \(=\left(x^2+2x+3\right)\left(x-1\right)^2\)(cái này bạn phân tích vế \(x^3+x^2+x-3=\left(x^2+2x+3\right)\left(x-1\right)\)là được

Ta có:\(\left(x-1\right)^2\ge0\)(luôn đúng).Dấu"="<=>x=1(1)

lại có \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2>0\)(2)

nhân vế (1) và (2) \(\Rightarrowđpcm\)

 Dấu"="<=>x=1

Xong rồi đấy,bạn k cho mình nhé