\(49-y^2=12\left(x-2001\right)^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Ta có:\(49-y^2\le49\Rightarrow12\left(x-2001\right)^2\le49\)

\(\Rightarrow\left(x-2001\right)^2\le4\)

\(\Rightarrow\left(x-2001\right)^2\in\left\{0;1;4\right\}\)

\(\Rightarrow x-2001\in\left\{0;1;2\right\}\)

\(\Rightarrow x\in\left\{2001;2002;2003\right\}\)

24 tháng 2 2017

\(49-y^2=12.\left(x^2-4002x+4004001\right)\)

\(\Leftrightarrow49-y^2=12x^2-48024x+48048012\)

\(\Leftrightarrow-y^2+12x^2+48024x=-49+48048012\)

Ý chết cha cái đề đâu rồi sao pit tính cái dj

13 tháng 10 2017

Giải:

a) \(x+\left(-\dfrac{31}{12}\right)^2=\left(\dfrac{49}{12}\right)^2-x=y\)

\(\Leftrightarrow x+\left(-\dfrac{31}{12}\right)^2=\left(\dfrac{49}{12}\right)^2-x\)

\(\Leftrightarrow x+\left(-\dfrac{31}{12}\right)^2-\left(\dfrac{49}{12}\right)^2+x=0\)

\(\Leftrightarrow2x+\left(-\dfrac{31}{12}\right)^2-\left(\dfrac{49}{12}\right)^2=0\)

\(\Leftrightarrow2x+\dfrac{\left(-31\right)^2}{12^2}-\dfrac{49^2}{12^2}=0\)

\(\Leftrightarrow2x+\dfrac{\left(-31\right)^2-49^2}{144}=0\)

\(\Leftrightarrow2x+\dfrac{961-2401}{144}=0\)

\(\Leftrightarrow2x+\dfrac{-1440}{144}=0\)

\(\Leftrightarrow2x+\left(-10\right)=0\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=5\)

\(x+\left(-\dfrac{31}{12}\right)^2=y^2\)

\(\Leftrightarrow5+\dfrac{961}{144}=y^2\)

\(\Leftrightarrow y^2=\dfrac{1681}{144}\)

\(\Leftrightarrow y=\pm\dfrac{41}{12}\)

Vậy ...

b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0;\forall x\)

\(\left(y^2-\dfrac{1}{4}\right)^{10}\ge0;\forall y\)

\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

29 tháng 10 2016

Ta có:

\(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)

\(\Rightarrow2x+\frac{961}{144}=\frac{2401}{144}\)

\(\Rightarrow2x=\frac{2401}{144}-\frac{961}{144}\)

\(\Rightarrow2x=\frac{1440}{144}\)

\(\Rightarrow2x=10\)

\(\Rightarrow x=5\)

Vậy \(x=5\)

30 tháng 10 2016

tìm x và y nha

30 tháng 5 2016

cách 1:=> (x - 7)^(x+1)= (x-7)^(x+11) 
 

TH1: x-7=0 => x=7 => 0^8=0^18 (TM) 
 

TH2: x-7=1 => x=8 (TM) 
 

TH3: x khác 7 và 8 => x+1=x+11 => vô lý => loại 
 

KL: x = 7 hoặc x=8

 

30 tháng 5 2016

( x-7)^( x+1) - ( x-7)^(x+11) = 0 
 

( x-7)^( x+1) - ( x-7)^(x+1)*x^10 = 0 
 

( x-7)^( x+1) (1-x^10) = 0 

tới đây dễ òi

13 tháng 11 2016

x+(-31/12)^2=(49/12)^2-x

x+x=(49/12)^2-(-31/12)^2

tính x

từ x tìm ra y

b)x(x-y):[y(x-y)]=3/10:(-3/50)=...

=>x/y=... =>x=...;y=...

2 tháng 9 2017

\(x+\left(\frac{-31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)

Xét \(x+\left(\frac{-31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)

\(\Rightarrow2x=\left(\frac{49}{12}\right)^2-\left(\frac{-31}{12}\right)^2=\frac{2401}{144}+\frac{961}{144}\)

\(\Rightarrow2x=\frac{3362}{144}\)

\(\Rightarrow x=\frac{3362}{144}.\frac{1}{2}=\frac{1681}{144}\)

Ta lai xét :

\(x+\left(\frac{-31}{12}\right)^2=y^2\)

\(\Rightarrow\frac{1681}{144}+\frac{-961}{144}=y^2\)

\(\Rightarrow\frac{720}{144}=y^2\)

\(\Rightarrow y^2=5\)

\(\Rightarrow y=2,236067977\)

30 tháng 9 2016

X+(-31/12)^2 = (49/12)^2 -x=y

(-31/12)^2 - (49/12)^2 = -x-x = y

961/144 - 2410/144 = -2x

-10=-2x

10=2x

10:2=x

5=x

X+961/144=y^2

5+961/144=y^2

1681/144=y^2

=>y=41/144

Dấu phân số mình ký hiệu là / đó nha