\(\cos x -m=0\) vô nghiệm khi m

50. \(\sqrt{3}\cos x +...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

\(a,sin2x-2sinx+cosx-1=0\)

\(\Leftrightarrow2sinxcosx-2sinx+cosx-1=0\)

\(\Leftrightarrow2sinx\left(cosx-1\right)+cosx-1=0\)

\(\Leftrightarrow\left(cosx-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=1\\sinx=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2k\pi\\x=\frac{-\pi}{6}+2k\pi\end{cases}}}\)

\(b,\sqrt{2}\left(sinx-2cosx\right)=2-sin2x\)

\(\Leftrightarrow\sqrt{2}sinx-2\sqrt{2}cosx-2+2sinxcosx=0\)

\(\Leftrightarrow\sqrt{2}sinx\left(1+\sqrt{2}cosx\right)-2.\left(\sqrt{2}cosx+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}cosx+1\right)\left(\sqrt{2}sinx-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{-\sqrt{2}}{2}\\sinx=\frac{2\sqrt{2}}{2}\left(l\right)\end{cases}}\)(vì \(-1\le sinx\le1\))

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3\pi}{4}+2k\pi\\x=\frac{5\pi}{4}+2k\pi\end{cases}}\)

6 tháng 8 2021

\(c,\frac{1}{cosx}-\frac{1}{sinx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow\frac{sinx-cosx}{sinx.cosx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow\frac{-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)}{sinx.cosx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow sin2x+1=0\)

\(\Leftrightarrow sin2x=-1\)

\(\Leftrightarrow2x=\frac{3\pi}{2}+2k\pi\)

\(\Leftrightarrow x=\frac{3\pi}{4}+k\pi\)

27 tháng 9 2020

Câu 1 với câu 2 sai đề, sin và cos nằm trong [-1;1], mà căn 2 với căn 3 lớn hơn 1 rồi

3/ \(\sin x=\cos2x=\sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2x+k2\pi\\x=\pi-\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\frac{2}{3}\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

4/ \(\Leftrightarrow\cos^2x-2\sin x\cos x=0\)

Xét \(\cos x=0\) là nghiệm của pt \(\Rightarrow x=\frac{\pi}{2}+k\pi\)

\(\cos x\ne0\Rightarrow1-2\tan x=0\Leftrightarrow\tan x=\frac{1}{2}\Rightarrow x=...\)

5/ \(\Leftrightarrow\sin\left(2x+1\right)=-\cos\left(3x-1\right)=\cos\left(\pi-3x+1\right)=\sin\left(\frac{\pi}{2}-\pi+3x-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\frac{\pi}{2}-\pi+3x-1\\2x+1=\pi-\frac{\pi}{2}+\pi-3x+1\end{matrix}\right.\Leftrightarrow....\)

6/ \(\Leftrightarrow\cos\left(\pi\left(x-\frac{1}{3}\right)\right)=\frac{1}{2}\Leftrightarrow\pi\left(x-\frac{1}{3}\right)=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{3}=\frac{1}{3}+2k\Rightarrow x=\frac{2}{3}+2k\left(1\right)\\x-\frac{1}{3}=-\frac{1}{3}+2k\Rightarrow x=2k\left(2\right)\end{matrix}\right.\)

\(\left(1\right):-\pi< x< \pi\Rightarrow-\pi< \frac{2}{3}+2k< \pi\) (Ủa đề bài sai hay sao ý nhỉ?)

7/ \(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x+\frac{\pi}{3}\\5x+\frac{\pi}{3}=\pi-\frac{\pi}{2}+2x-\frac{\pi}{3}\end{matrix}\right.\Leftrightarrow...\)

Thui, để đây bao giờ...hết lười thì làm tiếp :(

27 tháng 9 2020

7)

\(sin\left(5x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x-\frac{\pi}{3}+k2\pi\\5x+\frac{\pi}{3}=\pi-\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{42}+k\frac{2\pi}{7}\\x=\frac{\pi}{6}+k\frac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)

Do:\(0< x< \pi\)

\(Với:x=\frac{-\pi}{42}+k\frac{2\pi}{7}\left(k\in Z\right)\Rightarrow khôngtìmđượck\)

\(Với:x=\frac{\pi}{6}+k\frac{2\pi}{3}\left(k\in Z\right)\Leftrightarrow\frac{1}{4}< k< \frac{5}{4}\Rightarrow k=\left\{0;1\right\}\Rightarrow\left[{}\begin{matrix}k=0\Rightarrow x=\frac{\pi}{6}\\k=1\Rightarrow x=\frac{5\pi}{6}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=\frac{\pi}{6};x=\frac{5\pi}{6}\)

NV
7 tháng 6 2020

a/ ĐKXĐ: ...

\(y'=\frac{1}{2\sqrt{x+3}}-\frac{1}{2\sqrt{1-x}}\)

\(y'=0\Leftrightarrow\frac{1}{2\sqrt{x+3}}=\frac{1}{2\sqrt{1-x}}\Leftrightarrow\sqrt{x+3}=\sqrt{1-x}\)

\(\Leftrightarrow x+3=1-x\Rightarrow x=-1\)

b/ \(y'=\frac{sinx-x.cosx}{sin^2x}\)

c/ \(y'=\frac{cosx}{2\sqrt{x}}-\sqrt{x}.sinx\)

7 tháng 6 2020

Phần a ĐKXĐ là D=[-3,1] đúng không ạ

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5 2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6] 3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là 4, Tìm tất cả giá trị của...
Đọc tiếp

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây

A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5

2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6]

3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là

4, Tìm tất cả giá trị của tham số m để phương trình sin^2x+2(m+1)sinx-3m(m-2)=0 có nghiệm

5, Số nghiệm thuộc (0;pi) của phương trình sinx+\(\sqrt{1+cos^2x}\)=2(cos\(^2\)3x+1) là

6, Tìm m để phương trình (cosx+1)(cos2x-mcosx)=msin^2x có đúng 2 nghiệm x\(\in\)[0;2pi/3]

7, gpt \(\sqrt{3}\) tan^2x-2tanx-căn3=0

8, Tìm giá trị m để phương trình 5sinx-m=tan^2x(sinx-1)có đúng 3 nghiệm thuộc (-pi;pi/2)

9, Có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm x\(\in\) [-pi/6;pi/4]

10, tìm GTNN và GTLN của

a, y=4\(\sqrt{sinx+3}\) -1 b, y=\(\frac{12}{7-4sinx}\) trên đoạn[-pi/6;5pi/6] c, y=2cos^2x-sin2x+5

d, y=sinx+cos2x trên đoạn [0;pi]

11, Tìm số nghiệm của phương trình sin(cosx)=0 trên đoạn x[o;2pi]

12, Tính tổng các nghiệm của phương trình cos\(^2\) x-sin2x=\(\sqrt{2}\) +cos\(^2\) (\(\frac{\pi}{2}\) +x) trên khoảng(0;2pi)

13, nghiệm của pt \(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}\)=0 được biểu diễn bởi mấy điểm trên đường tròn lượng giác

14, giải pt cotx-tanx=\(\frac{2cos4x}{sin2x}\)

15, tìm m để pt (sinx-1)(cos^2x -cosx+m)=0 có đúng 5 nghiệm thuộc đoạn [0;2pi]

0
NV
20 tháng 9 2020

b/

\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)

\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)

\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)

Bạn tự cộng lại

NV
20 tháng 9 2020

c/

\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)

\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)

\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)

\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)

Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho

\(-1< cosx< 0\Rightarrow-1< m< 0\)

Gọi M,m tương ứng là GTLNvà GTNN của hàm số y=\(\frac{2cosx+1}{cosx-2}\). Khẳng định nào sau đây đúng A.M+9m=0 B.9M-m=0 C.9M+m=0 D.M+m=0 2,Cho hàm số y=\(\frac{2kcosx+k+1}{cosx+sinx+2}\). GTLN của hàm số y là nhỏ nhất khi k thuộc khoảng A.(0;\(\frac{1}{2}\)) B.(\(\frac{1}{3}\);\(\frac{3}{4}\)) C.(\(\frac{3}{4}\);\(\frac{4}{3}\)) D(\(\frac{3}{2}\);2) 3, Phương trình cos2x.sin5x+1=0 có...
Đọc tiếp

Gọi M,m tương ứng là GTLNvà GTNN của hàm số y=\(\frac{2cosx+1}{cosx-2}\). Khẳng định nào sau đây đúng

A.M+9m=0 B.9M-m=0 C.9M+m=0 D.M+m=0

2,Cho hàm số y=\(\frac{2kcosx+k+1}{cosx+sinx+2}\). GTLN của hàm số y là nhỏ nhất khi k thuộc khoảng

A.(0;\(\frac{1}{2}\)) B.(\(\frac{1}{3}\);\(\frac{3}{4}\)) C.(\(\frac{3}{4}\);\(\frac{4}{3}\)) D(\(\frac{3}{2}\);2)

3, Phương trình cos2x.sin5x+1=0 có mấy nghiệm thuộc đoạn \([\)\(\frac{-\pi}{2}\);2\(\pi\)]

4,Phương trình cos\(\frac{5x}{2}\).cos\(\frac{x}{2}\)-1=sin4x.sin2x có mấy nghiệm thuộc [-100\(\pi\);100\(\pi\)]

5, Phương trình 5+\(\sqrt{3}\) sinx(2cosx-3)=cosx(2cosx+3) có mấy nghiệm thuộc khoảng (0;10pi)

6, Gọi S là tập hợp các nghiệm thuộc khoảng (0;100pi) của phương trình (sin\(\frac{x}{2}\)+cos\(\frac{x}{2}\))\(^2\)+căn 3.cosx=3.Tính tổng phần tử S

7, Gọi x0 là nghiệm dương min của cos2x+\(\sqrt{3}\)sin2x+\(\sqrt{3}\)sĩn-cosx=2. Mệnh đề nào sau đây đứng

A.(0;pi/12) B.[pi/12;pi/6] C(pi/6;pi/3] D.(pi/3;pi/2]

8,Phương trình 48-\(\frac{1}{cos^4x}\)-\(\frac{2}{sin^2x}\)(1+cot2x.cotx)=0 có mấy nghiệm

9, GỌI S là tập hợp tất cả các giá trị nguyên của tham số m để pt 3\(\sqrt{sinx+cosx+2}\)+\(\sqrt{2}\)sin(x+\(\frac{\pi}{4}\))+m-1=0 có nghiệm .số phần tử của S là

9
NV
18 tháng 10 2020

1.

Hàm tuần hoàn với chu kì \(2\pi\) nên ta chỉ cần xét trên đoạn \(\left[0;2\pi\right]\)

\(y'=\frac{-4}{\left(cosx-2\right)^2}.sinx=0\Leftrightarrow x=k\pi\)

\(\Rightarrow x=\left\{0;\pi;2\pi\right\}\)

\(y\left(0\right)=-3\) ; \(y\left(\pi\right)=\frac{1}{3}\) ; \(y\left(2\pi\right)=-3\)

\(\Rightarrow\left\{{}\begin{matrix}M=\frac{1}{3}\\m=-3\end{matrix}\right.\)

\(\Rightarrow9M+m=0\)

NV
18 tháng 10 2020

2.

\(\Leftrightarrow y.cosx+y.sinx+2y=2k.cosx+k+1\)

\(\Leftrightarrow y.sinx+\left(y-2k\right)cosx=k+1-2y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\Rightarrow y^2+\left(y-2k\right)^2\ge\left(k+1-2y\right)^2\)

\(\Leftrightarrow2y^2-4k.y+4k^2\ge4y^2-4\left(k+1\right)y+\left(k+1\right)^2\)

\(\Leftrightarrow2y^2-4y-3k^2+2k+1\le0\)

\(\Leftrightarrow2\left(y-1\right)^2\le3k^2-2k+1\)

\(\Leftrightarrow y\le\sqrt{\frac{3k^2-2k+1}{2}}+1\)

\(y_{max}=f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3k^2-2k+1}+1\)

\(f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3\left(k-\frac{1}{3}\right)^2+\frac{2}{3}}+1\ge\frac{1}{\sqrt{3}}+1\)

Dấu "=" xảy ra khi và chỉ khi \(k=\frac{1}{3}\)

Đáp án A

NV
5 tháng 9 2020

a/

Đặt \(cosx=t\Rightarrow0< t\le1\)

\(\Rightarrow t^2-2mt+4\left(m-1\right)=0\)

\(\Leftrightarrow t^2-4-2m\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+2-2m\right)=0\)

\(\Leftrightarrow t=2m-2\)

\(\Rightarrow0< 2m-2\le1\Rightarrow1< m\le\frac{3}{2}\)

b.

\(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow\frac{x}{2}\in\left(-\frac{\pi}{4};\frac{\pi}{4}\right)\)

Đặt \(sin\frac{x}{2}=t\Rightarrow-\frac{\sqrt{2}}{2}< t< \frac{\sqrt{2}}{2}\)

\(\Rightarrow4t^2+2t+m-2=0\Leftrightarrow4t^2+2t-2=-m\)

Xét \(f\left(t\right)=4t^2+2t-2\) trên \(\left(-\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)\)

\(f\left(-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}\) ; \(f\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}\) ; \(f\left(-\frac{1}{4}\right)=-\frac{9}{4}\)

\(\Rightarrow-\frac{9}{4}\le f\left(t\right)< \sqrt{2}\Rightarrow-\frac{9}{4}\le-m< \sqrt{2}\)

\(\Rightarrow-\sqrt{2}< m\le\frac{9}{4}\)

3 tháng 9 2018

\(\left(sin\dfrac{x}{2}-cox\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2sin5x+1\)

\(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}-2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=2sin5x+1\)

\(1-sinx+\sqrt{3}cosx=2sin5x+1\)

\(sin\left(\dfrac{\Pi}{3}-x\right)=sin5x\)

3 tháng 9 2018

\(2sinx\left(\sqrt{3}cosx+sinx+2sin3x\right)=1\)

\(2\sqrt{3}sinxcosx+2sin^2x+4sinxsin3x=1\)

\(\sqrt{3}sin2x+1-cos2x+cos2x-2cos4x=1\)

\(\sqrt{3}sin2x+cos2x=2cos4x\)

\(cos\left(2x-\dfrac{\Pi}{3}\right)=cos4x\)