Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2)(x+5)(x+3)(x+4)-24=(X^2+7x+10)(x^2+7x+12)-24. Đặt x^2+7x+10=t đa thức đã cho trở thành t*(t+2)-24=t^2+2t-24=t^2+6t-4t-24=t*(t+6)-4(t+6). =(t+6)(t-4).
1: \(\left(x^2+1\right)^2-4x\left(1-x^2\right)\)
\(=x^4+2x^2+1-4x+4x^3\)
\(=x^4+4x^3+2x^2-4x+1\)
\(=\left(x^2+2x-1\right)^2\)
2: \(\left(x^2-8\right)^2+36\)
\(=x^4-16x^2+64+36\)
\(=x^4-16x^2+100\)
\(=x^4+20x^2+100-36x^2\)
\(=\left(x^2+10\right)^2-\left(6x\right)^2\)
\(=\left(x^2+6x+10\right)\left(x^2-6x+10\right)\)
3: \(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
4: \(x^4+64=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-16x^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
5: \(64x^4+1=64x^4+16x^2+1-16x^2\)
\(=\left(8x^2+1\right)^2-16x^2\)
\(=\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)\)
\(a^4+4=a^4+4a^2+4-4a^2=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2-2a+2\right)\left(a^2+2a+2\right)\) \(=\left[\left(a-1\right)^2+1\right]\left[\left(a+1\right)^2+1\right]\)
Áp dụng công thức trên, ta có:
\(P=\frac{\left(0^2+1\right)\left(2^2+1\right)\left(4^2+1\right)\left(6^2+1\right).....\left(20^2+1\right)\left(22^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)\left(6^2+1\right)\left(8^2+1\right).....\left(22^2+1\right)\left(24^2+1\right)}=\frac{1}{24^2+1}=\frac{1}{577}\)
Chúc bạn học tốt.
Bạn sai ở dấu bằng thứ 4. Mình làm lại nhé.
\(\left(x+y\right)^4+x^4+y^4\)
\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+4x^2y^2+y^4+4x^3y+4xy^3+2x^2y^2+x^4+y^4\)
\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2.\left[\left(x^4+2x^3y+x^2y^2\right)+\left(2x^2y^2+2xy^3\right)+y^4\right]\)
\(=2.\left[\left(x^2+xy\right)^2+2.\left(x^2+xy\right).y^2+\left(y^2\right)^2\right]\)
\(=2.\left(x^2+xy+y^2\right)^2\)
Học tốt nhe.
a)
\(x^4+4=(x^2)^2+2^2+2.x^2.2-4x^2\)
\(=(x^2+2)^2-(2x)^2=(x^2+2-2x)(x^2+2+2x)\)
b)
\(64x^4+81=(8x^2)^2+9^2+2.8x^2.9-144x^2\)
\(=(8x^2+9)^2-(12x)^2=(8x^2+9-12x)(8x^2+9+12x)\)
c)
\(x^8+4=(x^4)^2+2^2+2.x^4.2-4x^4\)
\(=(x^4+2)^2-(2x^2)^2=(x^4+2-2x^2)(x^4+2+2x^2)\)
d)
\(x^4+18x^2=(x^2)^2+18^2+2.x^2.18-36x^2\)
\(=(x^2+18)^2-(6x)^2=(x^2+18-6x)(x^2+18+6x)\)
e)
\(x^4+3x^2+4=(x^2)^2+2^2+2.x^2.2-x^2\)
\(=(x^2+2)^2-x^2=(x^2+2-x)(x^2+2+x)\)
f)
\(x^4-7x^2+1=(x^4-2x^2+1)-9x^2\)
\(=(x^2-1)^2-(3x)^2=(x^2-1-3x)(x^2-1+3x)\)
Ta có:\(A=\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^{32}-1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=4^{64}-1\)
\(\Rightarrow3A=B\)