\(x.\left(\sqrt{x^2+2x}+x-2.\sqrt{x^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

2.

\(-x^3+3x^2=k\)

\(y=-x^3+3x^2\)

\(y'=-3x^2+6x\)

\(y'=0\Leftrightarrow x=0,x=2\)

Kẻ bảng biến thiên.

Đường thẳng y = k cắt đồ thị hàm số \(\Leftrightarrow0< k< 2\)

NV
15 tháng 10 2020

1.

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le1\\x\ge2\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow1^-}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=1\) là TCĐ

\(\lim\limits_{x\rightarrow2^+}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=2\) là TCĐ

\(\lim\limits_{x\rightarrow+\infty}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=2\Rightarrow y=2\) là TCN

Vậy ĐTHS có 3 tiệm cận

3.

\(\lim\limits_{x\rightarrow0}y=\infty\Rightarrow x=0\) là TCĐ

\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x+9}+\sqrt{1-x}}{x}=-1\Rightarrow y=-1\) là TCN

ĐTHS có 2 tiệm cận

4.

\(\lim\limits_{x\rightarrow-2^+}y=\infty\Rightarrow x=-2\) là TCĐ

ĐTHS có 1 TCĐ (\(x=-3\) ko thuộc TXĐ của hàm số nên đó ko phải là TCĐ)

NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1+\dfrac{1}{x}}{-\left(m^2+1\right)\sqrt[]{1-\dfrac{4}{x^2}}}=-\dfrac{1}{m^2+1}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{1}{m^2+1}\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận ngang

\(\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{3}{0}=\infty\)

\(\lim\limits_{x\rightarrow-2^-}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{-1}{0}=\infty\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận đứng

Vậy ĐTHS có 4 tiệm cận

4 tháng 9 2021

tại sao nơi chỗ lim\(_{x->2^+}\) và limx->-2-    ở dưới mẫu lại bằng 0 vậy  ạ?

NV
29 tháng 9 2020

ĐKXĐ: \(0< x\le2\)

Miền xác định của hàm không chứa vô cùng nên hàm ko có tiệm cận ngang

\(\lim\limits_{x\rightarrow0^+}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=-\infty\) nên \(x=0\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=\infty\) nên \(x=1\) là tiệm cận đứng

NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-4}}{x+3}=\lim\limits_{x\rightarrow+\infty}\dfrac{-\sqrt{1-\dfrac{4}{x^2}}}{1+\dfrac{3}{x}}=-1\)

\(\Rightarrow y=-1\) là 1 TCN

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2-4}}{x+3}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1-\dfrac{4}{x^2}}}{1+\dfrac{3}{x}}=1\)

\(\Rightarrow y=1\) là 1 TCN

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

NV
18 tháng 4 2020

ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow-5}f\left(x\right)=\infty\) nên \(x=-5\) là 1 tiệm cận đứng

\(\lim\limits_{x\rightarrow+\infty}\frac{x\sqrt{x^2-4}}{\left(x-1\right)\left(x+5\right)}=\frac{\sqrt{1-\frac{4}{x^2}}}{\left(1-\frac{1}{x}\right)\left(1+\frac{5}{x}\right)}=1\)

\(\Rightarrow y=1\) là 1 TCN

\(\lim\limits_{x\rightarrow-\infty}\frac{x\sqrt{x^2-4}}{\left(x-1\right)\left(x+5\right)}=\frac{-\sqrt{1-\frac{4}{x^2}}}{\left(1-\frac{1}{x}\right)\left(1+\frac{5}{x}\right)}=-1\)

\(\Rightarrow y=-1\) là 1 TCN

Vậy ĐTHS đã cho có 3 đường tiệm cận (\(x=1\) ko thuộc TXĐ nên ko phải là TCĐ đâu)