K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8

\(4\cdot\left(3x-2\right)+\left(2-3x\right)^2=0\)

\(4\cdot\left(3x-2\right)+\left(3x-2\right)^2=0\)

\(\left(3x-2\right)\left(4+3x-2\right)=0\)

\(\left(3x-2\right)\left(3x+2\right)=0\)

\(\rArr\left[\begin{array}{l}3x-2=0\\ 3x+2=0\end{array}\right.\rArr\left[\begin{array}{l}3x=2\\ 3x=-2\end{array}\rArr\left[\begin{array}{l}x=\frac23\\ x=-\frac23\end{array}\right.\right.\)

18 tháng 3 2020

a. \(3x^2+2-1=0\)

\(\text{⇔}3x^2+1=0\)

\(\text{⇔}3x^2=-1\)

\(\text{⇔}x^2=\frac{-1}{3}\) (Vô lí)

Vậy phương trình trên vô nghiệm.

b. \(x^2-3x+2=0\)

\(\text{⇔}x^2-x-2x+2=0\)

\(\text{⇔}x\left(x-1\right)-2\left(x-1\right)=0\)

\(\text{⇔}\left(x-1\right)\left(x-2\right)=0\)

\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{1;2\right\}\).

c. \(x^2-4x+3=0\)

\(\text{⇔}x^2-x-3x+3=0\)

\(\text{⇔}x\left(x-1\right)-3\left(x-1\right)=0\)

\(\text{⇔}\left(x-1\right)\left(x-3\right)=0\)

\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{1;3\right\}\).

d. \(x^2+6x-16=0\)

\(\text{⇔}x^2-2x+8x-16=0\)

\(\text{⇔}x\left(x-2\right)+8\left(x-2\right)=0\)

\(\text{⇔}\left(x-2\right)\left(x+8\right)=0\)

\(\text{⇔}\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{2;-8\right\}\).

Chúc bạn học tốt@@

10 tháng 3 2020

\(a.17+8x=10-6x\\\Leftrightarrow 8x+6x=-17+10\\\Leftrightarrow 2x=-7\\ \Leftrightarrow x=-\frac{7}{2}\)

Vậy nghiệm của phương trình trên là \(-\frac{7}{2}\)

\(b.3\left(x+5\right)+7=19-5\left(x-2\right)\\\Leftrightarrow 3x+15+7=19-5x+10\\ \Leftrightarrow3x+5x=-15-7+19+10\\ \Leftrightarrow8x=7\\\Leftrightarrow x=\frac{7}{8}\)

Vậy nghiệm của phương trình trên là \(\frac{7}{8}\)

\(c.3x-4\left(x+2\right)\left(x+3\right)=14-4\left(x^2-3x\right)\\ \Leftrightarrow3x-4\left(x^2+5x+6\right)=14-4x^2+12x\\ \Leftrightarrow4x^2-4x^2+3x-5x-12x=24+14\\ \Leftrightarrow-14x=38\\ \Leftrightarrow x=-\frac{19}{7}\)

Vậy nghiệm của phương trình trên là \(-\frac{19}{7}\)

\(d.x+\frac{3}{4}+3x+2=\frac{x}{3}-3x-\frac{2}{6}\\ \Leftrightarrow\frac{12x}{12}+\frac{9}{12}+\frac{36x}{12}+\frac{24}{12}=\frac{4x}{12}-\frac{36x}{12}-\frac{4}{12}\\ \Leftrightarrow12x+9+36x+24=4x-36x-4\\ \Leftrightarrow12x+36x+36x-4x=-24-9-4\\ \Leftrightarrow80x=-37\\ \Leftrightarrow x=-\frac{37}{80}\)

10 tháng 3 2017

\(A=\left(\dfrac{-1}{2}+3x\right)\left(1-\dfrac{2}{3}x\right)\cdot1999=0\)

Để GTBT = 0 \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}+3x=0\\1-\dfrac{2}{3}x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{1}{2}\\-\dfrac{2}{3}x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{3}{2}\end{matrix}\right.\)thì GTBT trên bằng 0.

10 tháng 3 2017

\(\left(\dfrac{-1}{2}+3x\right)\left(1-\dfrac{2}{3}x\right)1999=0\)\(\Leftrightarrow\left(\dfrac{-1}{2}+3x\right)\left(1-\dfrac{2}{3}x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}+3x=0\\1-\dfrac{2}{3}x=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm \(x=\dfrac{3}{2}\)

Chúc bạn học tốt . Nhớ tick cho mình nha Đỗ Thanh Huyền

8 tháng 2 2020

Bài 2 :

a, Ta có : \(\left(x+4\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

b, Ta có : \(\left(3x-2\right)\left(4x-7\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4x-7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\4x=7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{7}{4}\end{matrix}\right.\)

c, Ta có : \(\left(x+5\right)\left(x^2+1\right)=0\)

=> \(\left[{}\begin{matrix}x+5=0\\x^2+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-5\\x^2+1=0\left(VL\right)\end{matrix}\right.\)

d, Ta có : \(x\left(x-1\right)\left(x^2+4\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=1\\x^2+4=0\left(VL\right)\end{matrix}\right.\)

e, Ta có : \(\left(3x+2\right)\left(x+\frac{1}{2}\right)=0\)

=> \(\left[{}\begin{matrix}3x+2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{2}\end{matrix}\right.\)

f, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x^2+7\right)=0\)

=> \(\left[{}\begin{matrix}x+2=0\\x-3=0\\x^2+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-2\\x=3\\x^2+7=0\left(VL\right)\end{matrix}\right.\)

8 tháng 2 2020

Bài 1 :

a, Ta có : \(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)

=> \(\frac{12}{12}-\frac{3\left(x+3\right)}{12}-\frac{2\left(x-2\right)}{12}=0\)

=> \(12-3\left(x+3\right)-2\left(x-2\right)=0\)

=> \(12-3x-9-2x+4=0\)

=> \(-5x=-7\)

=> \(x=\frac{7}{5}\)

10 tháng 4 2019

a) 3x^2 - 4x - 7 =0

<=> 3x^2 + 3x - 7x - 7= 0

<=> 3x(x+1) - 7(x+1)= 0

<=> (x+1)(3x-7) = 0

<=> x= -1 và x= 7/3

3 tháng 5 2015

<=> (3x+2) [(3x+2)+(4-x)] = 0

<=> (3x+2) (3x+2+4-x) = 0\

<=> (3x+2) (2x+6) = 0

<=> 3x+2 = 0 hoặc 2x+6 = 0

  • 3x+2 = 0 <=> 3x=-2 <=> x=-2/3
  • 2x+6=0 <=> 2x=-6 <=> x=-3

Vậy S={-2/3; -3}

NV
22 tháng 8 2020

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2-3x+9-\frac{3}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-3\left(x+\frac{1}{x}\right)+9=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

pt trở thành: \(t^2-2-3t+9=0\)

\(\Leftrightarrow t^2-3t+7=0\) (vô nghiệm)

Vậy pt đã cho vô nghiệm

26 tháng 8 2018

a) \(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\)

\(=\dfrac{5x-1-5x+7}{3x+2-3x+1}\)

\(=\dfrac{-1+7}{2+1}\)

\(=\dfrac{6}{3}\)

\(=2\)

Với \(\dfrac{5x-1}{3x+2}=2\)

\(\Rightarrow5x-1=2\left(3x+2\right)\)

\(\Rightarrow5x-1-2\left(3x+2\right)=0\)

\(\Rightarrow5x-1-6x-4=0\)

\(\Rightarrow-x-5=0\)

\(\Rightarrow x=-5\)

ĐKXĐ: x<>0

Ta có: \(\left(3x-\dfrac{1}{x}\right)\left(1\dfrac{2}{3}x\right)\cdot1999=0\)

=>3x2-1=0

=>x2=1/3

hay \(x\in\left\{\dfrac{\sqrt{3}}{3};-\dfrac{\sqrt{3}}{3}\right\}\)