Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)
\(=-\dfrac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)
\(=\dfrac{-3}{5}\)
b: \(\dfrac{4^{30}\cdot3^{43}}{2^{57}\cdot27^{15}}\)
\(=\dfrac{2^{60}\cdot3^{43}}{2^{57}\cdot3^{45}}\)
\(=8\cdot\dfrac{1}{9}=\dfrac{8}{9}\)
\(\dfrac{40^{30}.3^{43}}{2^{57}.27^{15}}=\dfrac{\left(2^3.5\right)^{30}.3^{43}}{2^{57}.\left(3^3\right)^{15}}=\dfrac{2^{90}.5^{30}.3^{43}}{2^{57}.3^{45}}\)
\(=\dfrac{2^{33}.2^{57}.5^{30}.3^{43}}{2^{57}.3^{43}.3^2}=\dfrac{2^{33}.5^{30}}{3^2}=\dfrac{2^{33}.5^{30}}{9}\)
\(A=\frac{-2}{9}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{15}+\frac{1}{57}+\frac{1}{3}+\frac{-1}{36}\)
\(A=\left(\frac{-2}{9}+\frac{-3}{4}+\frac{1}{3}+\frac{-1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{57}\)
\(A=\left(\frac{-8}{36}+\frac{-27}{36}+\frac{12}{36}+\frac{-1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)+\frac{1}{57}\)
\(A=\frac{-2}{3}+\frac{2}{3}+\frac{1}{57}\)
\(A=\frac{-38}{57}+\frac{38}{57}+\frac{1}{57}\)
\(A=\frac{1}{57}\)
Do x2n=(-x)2n
=>327.1530.(-4)16=327.(-15)30.416=327.(-15)30.(42)8=327.(-15)30.88
(327.1530.(-4)16)/((-15)30.811)=(327.(-15)30.88)/((-15)30.811)=327/83
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)