Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x=3/4-1/2=3/4-2/4=1/4
2: x-1/5=2/11
=>x=2/11+1/5=21/55
3: x-5/6=16/42-8/56
=>x-5/6=8/21-4/28=5/21
=>x=5/21+5/6=15/14
4: x/5=5/6-19/30
=>x/5=25/30-19/30=6/30=1/5
=>x=1
5: =>|x|=1/3+1/4=7/12
=>x=7/12 hoặc x=-7/12
6: x=-1/2+3/4
=>x=3/4-1/2=1/4
11: x-(-6/12)=9/48
=>x+1/2=3/16
=>x=3/16-1/2=-5/16
1)x= 1/4
2)x= 2/11+ 1/5
x= 21/55
3)x - 5/6 = 5/21
x = 5/21+5/6
x = 15/14
4)x/5 = 5/6 + -19/30
x:5 = 1/5
x = 1/5.5
x = 1
5) |x| - 1/4 = 6/18
|x| = 6/18 - 1/4
|x| =7/12
⇒x= 7/12 hoặc -7/12
6)x = -1/2 +3/4
x= 1/4
7) x/15 = 3/5 + -2/3
x:15 = -1/15
x = -1/15. 15
x = -1
8)11/8 + 13/6 = 85/x
85/24 = 85/x
⇒ x = 24
9) x - 7/8 = 13/12
x = 13/12 + 7/8
x = 47/24
10)x - -6/15 = 4/27
x = 4/27 + (-6/15)
x = -34/135
11) -(-6/12)+x = 9/48
x= 9/48 - 6/12
x = -5/16
12) x - 4/6 = 5/25 + -7/15
x -4/6 = -4/15
x = -4/15 + 4/6
x = 2/5
a, (\(\dfrac{9}{10}\) - \(\dfrac{15}{16}\)) \(\times\) ( \(\dfrac{5}{12}\) - \(\dfrac{11}{15}\) - \(\dfrac{7}{20}\))
= (\(\dfrac{72}{80}\) - \(\dfrac{75}{80}\)) \(\times\) (\(\)\(\dfrac{25}{60}\) - \(\dfrac{44}{60}\) - \(\dfrac{21}{60}\))
= - \(\dfrac{3}{80}\) \(\times\) (- \(\dfrac{2}{3}\))
= \(\dfrac{1}{40}\)
b, (-1)3 + (- \(\dfrac{2}{3}\))2 : 2\(\dfrac{2}{3}\) + \(\dfrac{5}{6}\)
= -13 + \(\dfrac{4}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{5}{6}\)
= -1 + \(\dfrac{4}{9}\) \(\times\) \(\dfrac{3}{8}\) + \(\dfrac{5}{6}\)
= -1 + \(\dfrac{1}{6}\) + \(\dfrac{5}{6}\)
= -1 + 1
= 0
a) \(\dfrac{2}{3}\left(x+1\right)-\dfrac{4}{5}\left(x+2\right)=\dfrac{35}{2}\)
\(\Rightarrow\dfrac{2}{3}x+\dfrac{2}{3}-\dfrac{4}{5}x-\dfrac{8}{5}=\dfrac{35}{2}\)
\(\Rightarrow\left(\dfrac{2}{3}-\dfrac{4}{5}\right)x+\left(\dfrac{2}{3}-\dfrac{8}{5}\right)=\dfrac{35}{2}\)
\(\Rightarrow-\dfrac{2}{15}x-\dfrac{14}{15}=\dfrac{35}{2}\)
\(\Rightarrow-\dfrac{2}{15}x=\dfrac{553}{30}\)
\(\Rightarrow x=\dfrac{553}{30}:-\dfrac{2}{15}\)
\(\Rightarrow x=-\dfrac{553}{4}\)
b) \(4\left(x-2\right)+5\left(x+1\right)=-15\)
\(\Rightarrow4x-8+5x+5=-15\)
\(\Rightarrow\left(4+5\right)x+\left(-8+5\right)=-15\)
\(\Rightarrow9x-3=-15\)
\(\Rightarrow9x=-15+3\)
\(\Rightarrow x=\dfrac{-12}{9}\)
\(\Rightarrow x=-\dfrac{4}{3}\)
c) \(\dfrac{3}{2}:x+\left(-\dfrac{5}{2}\right)=-\dfrac{7}{3}\)
\(\Rightarrow\dfrac{3}{2}:x=-\dfrac{7}{3}+\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{1}{6}:\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{1}{9}\)
\(\dfrac{15}{4}-2,5:\left|\dfrac{3}{4}.x+\dfrac{1}{2}\right|=3\)
\(\Rightarrow2,5:\left|\dfrac{3}{4}.x+\dfrac{1}{2}\right|=\dfrac{15}{4}-3\)
\(\Rightarrow2,5:\left|\dfrac{3}{4}.x+\dfrac{1}{2}\right|=\dfrac{3}{4}\)
\(\Rightarrow\left|\dfrac{3}{4}x+\dfrac{1}{2}\right|=2,5:\dfrac{3}{4}\)
\(\Rightarrow\left|\dfrac{3}{4}x+\dfrac{1}{2}\right|=\dfrac{10}{3}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x+\dfrac{1}{2}=\dfrac{10}{3}\\\dfrac{3}{4}x+\dfrac{1}{2}=-\dfrac{10}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{17}{6}\\\dfrac{3}{4}x=\dfrac{-23}{6}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{34}{9}\\x=\dfrac{-46}{9}\end{matrix}\right.\)
Vậy............
=> \(\left(2x-15\right)^3\left(2x-15-1\right)\left(2x-15+1\right)=0\)
=> \(\left(2x-15\right)^3\left(2x-16\right)\left(2x-14\right)=0\)
=> \(\left[{}\begin{matrix}2x-15=0\\2x-16=0\\2x-14=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{15}{2}\\x=8\\x=7\end{matrix}\right.\)
Vậy ...
cậu giải thích giùm mình đoạn này với P(x)=x^7-(x+1)x^6+(x+1)x^5-(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x+15
P(x)=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15
P(x)=x+15=79+15=94
hay giai giup mk may phan nay nhe
cmr cac bieu thuc sau ko phu thuoc vao x:
c)C=x(x^3+x^2-3x-2)-(x^2-2)(x^2+x-1)
e)E=(x+1)(x^2-x+1)-(x-1)(x^2+x+1)
tinh gia tri cua da thuc
b)Q(x)=x^14-10x^13=10x^12-10x^11+...+10x^2-10x+10 voi x=9
c)R(x)=x^4-17x^3+17x^2_17x+20 või=16
d)S(x)=x^10-13x^9+13x^8-13X^7+...+13x^2-13x+10 voi 12
`Answer:`
Tìm giá trị lớn nhất à bạn?
`\sqrt{x-2}>=0` với mọi `x`
`=>3\sqrt{x-2}>=0` với mọi `x`
`=>-3\sqrt{x-2}<=0` với mọi `x`
`=>4/15 -3\sqrt{x-2} <= 4/15` với mọi `x`
Dấu "=" xảy ra khi `\sqrt{x-2}=0<=>x=2`