Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm ngắn gọn nhé.
\(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}\)
\(\Rightarrow A=2^{51}-1\)
\(B=1+3+...+3^{66}\)
\(3B=3+3^2+...+3^{67}\)
\(2B=3+3^2+...+3^{67}-1-3-...-3^{66}\)
\(2B=3^{67}-1\)
\(B=\frac{3^{67}-1}{2}\)
\(^{3^2}\).\(^{3^3}\)+\(2^3\).\(2^2\)
(\(^{2^3}\).\(^{3^3}\))+(\(2^2\).\(^{3^2}\)
=275
a) Ta có: 4200 và 16150
Đổi: 16150 = (42)150 = 42.150 = 4300
Vì 4200 < 4300 nên 4200 < 16150
b) Ta có: 4200 và 3300
Đổi: 4200 = 42.100 = (42)100 = 16100 ; 3300 = 33.100 = (33)100 = 27100
Vì 16100 < 27100 nên 4200 < 3300
c) Ta có: 9400 và 81200
Đổi: 9400 = 92.200 = (92)200 = 81200
Vì 81200 = 81200 nên 9400 = 81200
Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=\left(2^3\right)^{2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Vì: 8 > 3 và 2187 > 512
\(\Rightarrow8^{2187}>3^{512}\)
\(\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
Vậy: \(2^{3^{2^3}}>3^{2^{3^2}}\)
Bài 1:
Giờ đầu bán được số quả dưa là:
44.\(\frac{1}{3}\)+\(\frac{1}{3}\) = 15 (quả)
Giờ thứ hai bán được số quả dưa là:
(44-15).\(\frac{1}{3}\)+ \(\frac{1}{3}\)= 10 (quả)
Giờ thứ ba bán được số quả là:
44-15-10 = 19 (quả)
Đáp số: 19 quả
*Bài 2 mình hông có biết làm. Thứ lỗi nha
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
\(41\cdot36+36\cdot59+400\)
\(=36\cdot\left(41+59\right)+400\)
\(=36\cdot100+400\)
\(=3600+400\)
\(=4000\)
___________
\(3^3-2^3:2+11\cdot5^2\)
\(=27-8:2+11\cdot25\)
\(=27-4+\left(10+1\right)\cdot25\)
\(=27-4+250+25\)
\(=23+275\)
\(=298\)