Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-3)3 + 3 -x =0
=>x3-9x2+26x-24=0
=>x3-7x2+12x-2x2+14x-24=0
=>x(x2-7x+12)-2(x2-7x+12)=0
=>(x-2)(x2-7x+12)=0
=>(x-2)[x2-4x-3x+12]=0
=>(x-2)[x(x-4)-3(x-4)]=0
=>(x-2)(x-3)(x-4)=0
=>x-2=0 hoặc x-3=0 hoặc x-4=0
=>x=2 hoặc 3 hoặc 4
Vậy tập nghiệm của pt là S={2;3;4}
= (x-3)3 - (x-3) =0
(x-3)((x-3)2 -1)=0
(x-3)(x-3+1)(x-3-1) =0
(x-3)(x-2)(x-4) =0
x = 3;2;4
đơn giản,dễ hiểu, vận dụng hđt đáng nhớ, có ai giỏi =em k
phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung(không dùng HĐT)
x3 -3x2y+3xy2 - y3
\(=xy\left(x^2-3x+3y-y^2\right)\)
\(=xy\left[\left(x-y\right)\left(x+y\right)+3\left(x-y\right)\right]\)
\(=xy\left(x-y\right)\left(x+y+3\right)\)
\(Ht\)
nếu sai cho mik xl vì mik chx thành thục cái này
\(2x^2y^3-\frac{x}{4}-4y^6\)
đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được
\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)
\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)
\(x^2+x-6=x^2-2x+3x-6=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)
\(x^2+x-6=x^2+2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}=\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=\left(x+\frac{1}{2}-\frac{5}{2}\right)\left(x+\frac{1}{2}+\frac{5}{2}\right)=\left(x-2\right)\left(x+3\right)\)
x2+x-6=x3+3x-2x-6=x(x+3)-2(x+3)=(x+3)(x-2)
x2+x-6=\(x^2+x+\frac{1}{4}-6-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\left(\frac{5}{2}\right)^2=\left(x+\frac{1}{2}-\frac{5}{2}\right)\left(x+\frac{1}{2}+\frac{5}{2}\right)=\left(x-2\right)\cdot\left(x+3\right)\)
=x^2-4x+3x-12
=x[x-4]+3[x-4]
=[x+3][x-4]
C2:=x^2-16-[x-4]
=[x-4][x+4]-[x-4]
=[x-4][x+4-1]
=[x-4][x+3]
Cách nữa nè !
x^2-x-12
=(x^2-9)-(x+3)
=(x-3)(x+3)-(x+3)
=(x+3)(x-4)
Đặt x^2 + 2x = y thay vào ta có:
y(y+4) + 3 = y^2 + 4y +3 = y^2 + y + 3y + 3 = y(y+1) + 3(y + 1) = ( y + 3)( y+ 1)
Thay y = x^2 + 2x ta có
( x^2 + 2x + 3)(x^2 + 2x+ 1) = ( x^2 + 2x + 3) (x+ 1)^2
Đúng cho mình nha
\(\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)
Đặt \(x^2+2x+2=t\)
\(\Rightarrow\left(t-2\right)\left(t+2\right)+3=t^2-4+3=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(x^2+2x+2-1\right)\left(x^2+2x+2+1\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)
\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)
a) 4xn+2 + 8xn = 4xn( x2 + 2 )
b) ( 4x - 8 )( x2 + 6 ) - ( x - 2 )( x + 7 ) - 10 + 5x
= 4( x - 2 )( x2 + 6 ) - ( x - 2 )( x + 7 ) + 5( x - 2 )
= ( x - 2 )[ 4( x2 + 6 ) - ( x + 7 ) + 5 ]
= ( x - 2 )( 4x2 + 24 - x - 7 + 5 )
= ( x - 2 )( 4x2 - x + 22)