Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
x,y,z,t thuộc N*
=>x<x+y+z
=>\(0<\frac{x}{x+y+z}<1\)
=>\(\frac{x}{x+y+z}\notin N\)
CM tương tự với 3 số còn lại
=>điều cần chứng minh
Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
a)\(2x=3y=5z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{15}=\frac{y}{10};\frac{y}{10}=\frac{z}{6}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)
suy ra:\(\frac{x}{15}=-3\Rightarrow x=15.\left(-3\right)=-45\)
\(\frac{y}{10}=-3\Rightarrow y=10.\left(-3\right)=-30\)
\(\frac{z}{6}=-3\Rightarrow z=6.\left(-3\right)=-18\)
b)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-40}{7}\)câu này có sai đề ko sao số lạ thế
A =(x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x + y)(x + 4y). (x + 2y)(x + 3y) + y4
= (x2 + 5xy + 4y2 )(x2 + 5xy + 6y2 )+ y4
= (x2 + 5xy + 5y2 - y2 )(x2 + 5xy + 5y2 – y2 ) + y4
= (x2 + 5xy + 5y2 )2 - y4 + y4
= (x2 + 5xy + 5y2 )2
Do x , y Z nên x2 + 5xy + 5y2 Z rròi nè **** đi