\(\dfrac{20}{112}\)+\(\dfrac{20}{280}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

Ta có :

\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\)

\(M=\dfrac{20}{8\times14}+\dfrac{20}{14\times20}+\dfrac{20}{20\times26}+\dfrac{20}{26\times32}\)

\(\Rightarrow\dfrac{3}{10}M=\dfrac{6}{8\times14}+\dfrac{6}{14\times20}+\dfrac{6}{20\times26}+\dfrac{6}{26\times32}\)

\(\dfrac{3}{10}M=\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{32}\)

\(\dfrac{3}{10}M=\dfrac{1}{8}-\dfrac{1}{32}=\dfrac{3}{32}\)

\(\Rightarrow M=\dfrac{3}{32}\div\dfrac{3}{10}=\dfrac{5}{16}\)

29 tháng 7 2018

\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\)

\(M=20.\left(\dfrac{1}{112}+\dfrac{1}{280}+\dfrac{1}{520}+\dfrac{1}{832}\right)\)

\(M=20.\left(\dfrac{1}{8.14} +\dfrac{1}{14.20}+\dfrac{1}{20.26}+\dfrac{1}{26.32}\right)\)

\(\Rightarrow6M=20.\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+\dfrac{6}{26.32}\right)\)

\(\Rightarrow6M=20.\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{32}\right)\)

\(\Rightarrow6M=20.\left(\dfrac{1}{8}-\dfrac{1}{32}\right)\)

\(\Rightarrow6M=20.\dfrac{3}{32}\)

\(\Rightarrow6M=\dfrac{15}{8}\)

\(\Rightarrow M=\dfrac{15}{8}:6\)

\(\Rightarrow M=\dfrac{5}{16}\)

Vậy \(M=\dfrac{5}{16}\)

24 tháng 7 2017

Đặt:\(7a=3b=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{k}{7}\\b=\dfrac{k}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{k}{7}.\dfrac{k}{3}=20\Rightarrow\dfrac{k^2}{21}=20\Rightarrow k^2=420\Rightarrow k=\pm\sqrt{420}\)

Xét: \(k=\sqrt{420}\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{420}}{7}\\b=\dfrac{\sqrt{420}}{3}\end{matrix}\right.\)

Xét: \(k=-\sqrt{420}\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{-\sqrt{420}}{7}\\b=\dfrac{-\sqrt{420}}{3}\end{matrix}\right.\)

b) Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(=\dfrac{a+b-c}{2+3-4}=\dfrac{100}{1}=100\)

\(\Rightarrow\left\{{}\begin{matrix}a=100.2=200\\b=100.3=300\\c=100.4=400\end{matrix}\right.\)

c) Đặt: \(\dfrac{a}{4}=\dfrac{b}{7}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=4k\\b=7k\end{matrix}\right.\)

\(\Rightarrow4k.7k=112\)

\(\Rightarrow28k^2=112\)

\(k^2=4\Rightarrow k=\pm2\)

Xét: \(k=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=2.4=8\\b=2.7=14\end{matrix}\right.\)

Xét:\(k=-2\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2.4=-8\\c=-2.7=-14\end{matrix}\right.\)

24 tháng 7 2017

\(\text{a) }7a=3b\text{ và }ab=20\\ \text{Đặt }7a=3b=k\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{7}k\\b=\dfrac{1}{3}k\end{matrix}\right.\left(1\right)\\ \text{Từ }\left(1\right)\text{ suy ra : }\\ ab=20\\ \Leftrightarrow\left(\dfrac{1}{7}k\right)\left(\dfrac{1}{3}k\right)=20\\ \Leftrightarrow\left(\dfrac{1}{7}\cdot\dfrac{1}{3}\right)\left(k\cdot k\right)=20\\ \Leftrightarrow\dfrac{1}{21}k^2=20\\ \Leftrightarrow k^2=420\\ \Leftrightarrow k=\sqrt{420}\\ \text{Từ }k=\sqrt{420}\text{ suy ra : }\left\{{}\begin{matrix}a=\dfrac{1}{7}\cdot\sqrt{420}\\b=\dfrac{1}{3}\cdot\sqrt{420}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{420}}{7}\\b=\dfrac{\sqrt{420}}{3}\end{matrix}\right.\\ \text{Vậy }a=\dfrac{\sqrt{420}}{7};b=\dfrac{\sqrt{420}}{3}\)

\(\text{b) }\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\text{ và }a+b-c=100\\ \text{ Theo bài ra ta có : }\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\\ a+b-c=100\\ \text{Áp dụng tính chất dãy tỉ số bằng nhau ta được : }\\ \dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b-c}{2+3-4}=\dfrac{100}{1}=100\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=100\\\dfrac{b}{3}=100\\\dfrac{c}{4}=100\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=200\\b=300\\c=400\end{matrix}\right.\\ \text{Vậy }a=200;b=300;c=400\)

\(\text{c) }\dfrac{a}{4}=\dfrac{b}{7}\text{ và }ab=112\\ \text{Đặt }\dfrac{a}{4}=\dfrac{b}{7}=k\Rightarrow\left\{{}\begin{matrix}a=4k\\b=7k\end{matrix}\right.\left(1\right)\\ \text{Từ }\left(1\right)\text{ suy ra : }\\ ab=112\\ \Leftrightarrow4k\cdot7k=112\\ \Leftrightarrow28k^2=112\\ \Leftrightarrow k^2=4\\ \Leftrightarrow k=2\\ \text{Từ }k=2\Rightarrow\left\{{}\begin{matrix}a=4\cdot2\\b=7\cdot2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8\\b=14\end{matrix}\right.\\ \text{Vậy }a=8;b=14\)

b: Ta có: x/y=7/9

nên x/7=y/9

=>x/49=y/63

Ta có: y/z=7/3

nên y/7=z/3

=>y/63=z/27

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)

Do đó: x=-735/13; y=-945/13; z=-405/13

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)

Do đó: x=14; y=40; z=64

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

Do đó: x=24; y=15; z=6

13 tháng 7 2017

a, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.2^8.5^4}{5^{10}.2^{10}}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)

b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

c, \(\dfrac{45^{10}.5^{20}}{75^5}=\dfrac{5^{10}.3^{20}.5^{20}}{3^5.5^{10}}=5^{20}.3^{15}\)

d, \(\left(0,8\right)^5=\left(0,1\right)^5.8^5=\dfrac{1}{100000}.32768=0,32768\)

e, \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=3^2=9\)

d, \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)

Chúc bạn học tốt!!!

13 tháng 7 2017

\(\text{a) }\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(5\cdot4\right)^4}{\left(5^2\right)^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{5^8\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{25\cdot4}=\dfrac{1}{100}\)

\(\text{b) }\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

\(\text{c) }\dfrac{45^{10}\cdot5^{20}}{75^5}=\dfrac{\left(5\cdot9\right)^{10}\cdot5^{20}}{\left(25\cdot3\right)^5}=\dfrac{5^{10}\cdot9^{10}\cdot5^{20}}{25^5\cdot3^5}=\dfrac{5^{10}\cdot5^{20}\cdot\left(3^2\right)^{10}}{\left(5^2\right)^5\cdot3^5}=\dfrac{5^{30}\cdot3^{20}}{5^{10}\cdot3^5}=5^{20}\cdot3^{15}\)

\(\text{d) }\left(0.8\right)^5=\left(\dfrac{8}{10}\right)^5=\left(\dfrac{4}{5}\right)^5=\dfrac{4^5}{5^5}=\dfrac{64}{3125}\)

\(\text{e) }\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=3^2=9\)

\(f\text{) }\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

29 tháng 7 2018

A)0,25:(10,3-9,8)-3/4

=1/4:(103/10-49/5)-3/4

=1/4:1/2-3/4

=1/2-3/4

=2/4-3/4

=-1/4

B)-5/9.13/28-13/28.4/9

=-5/9-4/9.13/28

=-1.13/28

=-13/28

c)6/7+5/8:5-3/16

=6/7+1/8-3/16

=55/56-3/16

=89/112

d)-5/7.2/11+-5/7.9/11+1/5/7

=-5/7.(2/11+9/11)+12/7

=-5/7.1+12/7

=-5/7+12/7

=1

e)-7/12-8/15+11/20

=-67/60+11/20

=-17/30

f)-17/25.20/33+-17/25.13/33+-3/25

=-17/25.(20/33+13/33)-3/25

=-17/25.1-3/25

=-17/25-3/25

=-4/5

CHÚC BẠN HỌC TỐT...............

NẾU ĐÚNG THÌ TICK CHO MK VỚI NHA HELLO HELLO..........

hihihihihihi

9 tháng 8 2017

a)\(\dfrac{8^8.3^{14}}{9^6.2^{20}}=\dfrac{^{24}.3^{14}}{3^{12}.2^{20}}=\dfrac{2^4.3^2}{1}=144\)

b),c) tự tính nha bn

9 tháng 8 2017

a) \(\dfrac{8^8.3^{14}}{9^6.2^{20}}=\dfrac{\left(2^3\right)^8.3^{14}}{\left(3^2\right)^6.2^{20}}=\dfrac{2^{24}.3^{14}}{3^{12}.2^{20}}=\dfrac{2^4.3^2}{1}=144\)

b,c bấm máy tính

22 tháng 10 2017

\(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{20}\)

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}\)

\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\right)\)

\(A=1-\dfrac{1}{2^{20}}=\dfrac{2^{20}-1}{2^{20}}\)

Chọn A

28 tháng 9 2017

\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}+\dfrac{1}{x-20}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{x}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}+\dfrac{1}{x-20}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{x-1}=\dfrac{3}{4}\Rightarrow3x-3=4\Rightarrow x=\dfrac{7}{3}\)

Chúc bạn học tốt!

a)\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có;

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2}{9}=\dfrac{x-3y+42}{4-3.3+9.21}=\dfrac{62}{184}=\dfrac{31}{92}\)

=>x=...;y=....

\(B=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{20}\cdot\dfrac{20\cdot19}{2}\)

\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{19}{2}\)

\(=\dfrac{2}{2}+\dfrac{3}{2}+...+\dfrac{19}{2}\)

\(=\dfrac{18\cdot\left(19+2\right)}{2}=9\cdot21=189\)