Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{4}\sqrt{x}-\sqrt{9x}+5=\frac{1}{4}\sqrt{9x}\)
ĐK : x ≥ 0
⇔ \(\frac{3}{4}\sqrt{x}-\sqrt{3^2x}-\frac{1}{4}\sqrt{3^2x}=-5\)
⇔ \(\frac{3}{4}\sqrt{x}-3\sqrt{x}-\frac{1}{4}\cdot3\sqrt{x}=-5\)
⇔ \(-\frac{9}{4}\sqrt{x}-\frac{3}{4}\sqrt{x}=-5\)
⇔ \(-3\sqrt{x}=-5\)
⇔ \(\sqrt{x}=15\)
⇔ \(x=225\)( tm )
b) \(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
ĐK : x ≤ 3
⇔ \(\sqrt{3-x}-\sqrt{3^2\left(3-x\right)}+\frac{5}{4}\sqrt{4^2\left(3-x\right)}=6\)
⇔ \(\sqrt{3-x}-3\sqrt{3-x}+\frac{5}{4}\cdot4\sqrt{3-x}=6\)
⇔ \(-2\sqrt{3-x}+5\sqrt{3-x}=6\)
⇔ \(3\sqrt{3-x}=6\)
⇔ \(\sqrt{3-x}=2\)
⇔ \(3-x=4\)
⇔ \(x=-1\)( tm )
c) \(\sqrt{9x^2+12x+4}=4\)
⇔ \(\sqrt{\left(3x+2\right)^2}=4\)
⇔ \(\left|3x+2\right|=4\)
⇔ \(\orbr{\begin{cases}3x+2=4\\3x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}\)
d) \(\frac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\frac{x-1}{25}}=\frac{29}{15}\)
ĐK : x ≥ 1
⇔ \(\frac{1}{3}\sqrt{x-1}+2\sqrt{2^2\left(x-1\right)}-12\sqrt{\left(\frac{1}{5}\right)^2\cdot\left(x-1\right)}=\frac{29}{15}\)
⇔ \(\frac{1}{3}\sqrt{x-1}+2\cdot2\sqrt{x-1}-12\cdot\frac{1}{5}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\frac{1}{3}\sqrt{x-1}+4\sqrt{x-1}-\frac{12}{5}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\frac{29}{15}\sqrt{x-1}=\frac{29}{15}\)
⇔ \(\sqrt{x-1}=1\)
⇔ \(x-1=1\)
⇔ \(x=2\)( tm )
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(=\left|1-3x\right|+\left|3x-2\right|\)
\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)
Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)
⇔ \(\sqrt{\left(3x^2\right)}+12x+4=4\)
⇔ \(3x+12x+4=4\)
⇔ 15x + 4 = 4
⇔ 15x = 0
⇔ x = 0
\(\sqrt{9x^2+12x+4}=4\left(đkxđ:x\in R\right)\)
\(\Leftrightarrow\sqrt{\left(3x+2\right)^2}=4\Leftrightarrow\left|3x+2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=2\\3x+2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\frac{-4}{3}\left(TM\right)\end{matrix}\right.\)
vậy x=0 hoặc x=-4/3 là nghiệm của phương trình
\(\sqrt{9x^2+12x+4}=4\)
=> \(9x^2+12x+4=4^2=16\)
=> \(9x^2+12x=16-4=12\)
=> \(9x^2+12x-12=0\)
=> \(3\left(3x^2+4x-4\right)=0\)
=> \(3x^2+4x-4=0:3=0\)
=> \(3x^2+4x=0+4=4\)
em chỉ biết đến vậy
\(\Leftrightarrow4-\sqrt{\left(3x-2\right)^2}=1\\ \Leftrightarrow\left|3x-2\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=-3,\forall x< \dfrac{2}{3}\\3x-2=3,\forall x\ge\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3},\forall x< \dfrac{2}{3}\left(tm\right)\\x=\dfrac{5}{3},\forall x\ge\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{5}{3}\end{matrix}\right.\)